
April 2022 1 of 35

A Projective Operator Splitting Approach
to Stochastic Programming

Jonathan Eckstein
Rutgers University, New Jersey, USA

Portions of the work here are joint with

Benar F. Svaiter – IMPA, Rio de Janeiro
Patrick Combettes – North Carolina State University
Jean-Paul Watson, Lawrence Livermore National Lab

David L. Woodruff, University of California, Davis

April 2022 2 of 35

Ronald E. Bruck

• I didn’t know Ronald Bruck

• But I cited 5 of his pioneering papers in my dissertation

o Evaluating resolvents of monotone set-valued operators
(1973)

o Extragradient methods for set-valued monotone operators
(1974)

o Steepest-descent paths for nonsmooth functions (1975)

o Forward-backward splitting with set-valued monotone
operators 1975, 1977

• I was still in high school when most of these were published

April 2022 3 of 35

Firm Nonexpansiveness

• Firm nonexpansiveness (½-averagedness) of operators is a key
tool in proving convergence all proximal algorithms

o The proximal point algorithm / Krasnoselski-Mann iteration

o Douglas-Rachford splitting

o ADMM

o Etc.

• If J is the algorithmic map, firm nonexpansiveness means

() 2 2 2, ' () (') ' (Id)() (Id)(')x x J x J x x x J x J x∀ − ≤ − − − − −

• If we let 1 ()k kx J x+ = and *x is any solution / fixed point of J,
2 2 21 * * 1k k kx x x x x x+ +− ≤ − − −

April 2022 4 of 35

A Picture

• Rewrite as
2 2 21 * 1 *k k kx x x x x x+ +− + − ≤ −

• The angle between 1k kx x +− and * 1kx x +− is at least 90º

x*

xk

xk + 1

April 2022 5 of 35

Firm Nonexpansiveness Þ Projection

• This means that 1kx + is the projection of kx onto the halfspace

{ }1 1, 0k k k
kH x x x x x+ += ∈ − − ≤ ,

which must contain *x

x*

xk

xk + 1

April 2022 6 of 35

Firm Nonexpansiveness = Projection

• Consider any algorithm of the form
1 proj ()

k

k k
Sx x+ = ,

where kS is a closed convex set containing all possible
solutions *x

• Any such process has exactly the same property,

2 2 21 * * 1k k kx x x x x x+ +− ≤ − − −

x*

xk

xk+1

April 2022 7 of 35

Firm Nonexpansiveness = Projection

• Firmly nonexpansive maps can always be interpreted as
projection

• Any projection algorithm looks firmly nonexpansive

• This insight can be used to construct and modify a wide range
of algorithms

• With a little care, the same insight can be extended to any
process with property, for some 0β > ,

2 2 21 * * 1k k kx x x x x xβ+ +− ≤ − − −

(covers α -averaged operators for 1
2α ≠)

• Equivalent to over- or under-relaxed projection onto a
separating hyperplane

April 2022 8 of 35

General Problem Setting

Consider monotone inclusion problems of the form

*

1
0 ()

n

i i i
i

G T G x
=

∈∑

where

• 0, , n  are real Hilbert spaces

• :i i iT   are maximal monotone operators, 1, ,i n= 

• 0:i iG   are bounded linear maps, 1, ,i n= 

Generalizes

0 1
min ()

n

i ix i
f G x

∈
=

 
 
 
∑

April 2022 9 of 35

The Primal-Dual Solution Set (Kuhn-Tucker Set)

{ }1 1
(, , ,) (1,) (), 0n

n i i i i ii
z w w i n w T G z G w

=
= ∀ = ∈ =∑ *

 

Or, if we assume that 0 , Idn nG= =  ,

{ }1 *
1 1 1

(, , ,) (1, 1) (), ()n
n i i i i i ni

z w w i n w T G z G w T z−
− =

= ∀ = − ∈ − ∈∑  

• This is the set of points satisfying the optimality conditions

• Standing assumption:  is nonempty

• Essentially in E & Svaiter 2009:

  is a closed convex set

• In the 0 , Idn nG= =  case, streamline notation:

For 1 1n−∈ × × w , let
1 *
1

n
n i ii

w G w−

=
−∑

April 2022 10 of 35

Valid Inequalities for 

• Take some ,i i ix y ∈ such that ()i i iy T x∈ for 1, ,i n= 

• If (,)z ∈w , then ()i i iw T G z∈ for 1, ,i n= 

• Monotonicity implies that , 0i i i ix G z y w− − ≥ for 1, ,i n= 

• Negate and add up:

1
(,) , 0 (,)

n

i i i i
i

z G z x y w zϕ
=

= − − ≤ ∀ ∈∑ w w


{ }() 0

() 0

H p p

p p

ϕ

ϕ

= =

≤ ∀ ∈

April 2022 11 of 35

Confirming that ϕ is Affine

The quadratic terms in (,)zϕ w take the form

1 1 1
, , , , 0 0

n n n

i i i i i i
i i i

G z w z G w z G w z
= = =

− = − = − = − =∑ ∑ ∑T T

• Also true in the 0 , Idn nG= =  case where we drop the nth
index

o Slightly different proof, same basic idea

April 2022 12 of 35

Generic Projection Method for a
Closed Convex Set  in a Hilbert Space 

Apply the following general template:

• Given kp ∈, choose some affine function kϕ with
() 0k p pϕ ≤ ∀ ∈

• Project kp onto { }() 0k kH p pϕ= = , possibly with an over-
relaxation factor [,2]kλ ε ε∈ − , giving 1kp + , and repeat…

In our case: we find kϕ by picking some

, : (), 1, ,k k k k
i i i i i ix y y T x i n∈ ∈ =  and using the construction above

{ }
 is affine

() 0

() 0
() 0

k

k k

k

k k

H p p

p p
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>



1kp +

kp



April 2022 13 of 35

Selecting the Right kϕ

• If we pick kϕ badly, we may “stall”

• Selecting kϕ involves picking some , : ()k k k k
i i i i i ix y y T x∈ ∈ ,

1, ,i n= 

• One key property is

1
(,) , 0

n
k k k k k k

k i i i i
i

z G z x y wϕ
=

− − ≥∑w

with strict inequality if (,)k kz ∉w

• The first suggestion is “prox” (E & Svaiter 2008 & 2009)

April 2022 14 of 35

Prox Does the Job!

• We have an iterate 1(,) (, , ,)k k k k k k
np z z w w= = w

• Take any 0ikc > and consider (,) Prox ()
ik i

k k k k
i i c T i ik ix y G z c w= +

• Then ()k k k k k k k k

i ik i i ik i ik i i i ix c y G z c w c y w G z x+ = + ⇔ − = −

• Implying
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥

k k k k
i ik i i ik ix c y G z c w+ = +

(,)k k
i ix y

(,)k k
iz w

iT

April 2022 15 of 35

Prox Finishes the Job

From
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥

we have that

1
, 0

n
k k k k

i i i i
i

G z x y w
=

− − ≥∑

and this inequality is strict unless k k
i iG z x= and k k

i iy w= for all i,
which means that (,)k kz ∈w

The entire convergence proof follows from this same relationship.

April 2022 16 of 35

Algorithm Including the Details

• Choose any min max0 2λ λ< ≤ <
• For 1,2,k = 

{ }

{ }

1 1 1 1

1

1
2 2

1

min max
1

, : (), 1, ,

(, ,) proj (, ,) (, ,) 0

max , ,0

[,]

 to find

, where

Pick any

Process operators ipk k k k
i i i i i

nk k k k
n n n i ii

nk k
i ii

n k k
i i i ii

k nk k
ii

k

x y y T x i n

u u x x w w G w

v G y

G z x y w

v u

z z

θ

λ λ λ

=

=

=

=

+

∈ ∈ =

= = =

=

− −
=

+

∈

=

∑

∑
∑

∑

  T

T

 

  

1 , 1, ,

k k
k k

k k k
i i k k i

v

w w u i n

λ θ

λ θ+

−

= − = 

• Or, when 0 , Idn nG= =  , one can avoid the proj operation

April 2022 17 of 35

Many Variations Possible in “Process Operators”

1. Inexact processing: the prox operations may be performed
approximately using a relative error criterion
• E & Svaiter 2009

2. Block asynchrony: you do not have to process every operator
at every iteration; you may process some subset and let

1 1(,) (,)k k k k
i i i ix y x y− −= for the rest, so long as you process each

operator at least once every M iterations
• Combettes & E 2018, E 2017

3. Lag asynchrony: you may process operators using (boundedly)
old information (,) (,)(,)d i k d i kz w , where (,)k d i k k K≥ ≥ −
• Combettes & E 2018, E 2017

4. Non-prox steps: For Lipschitz continuous gradients,
procedures using one or two gradient steps may be
substituted for the prox operations
• Johnstone and E 2022, 2021

also see Tranh-Dinh and Vũ 2015 + “mix and match”

April 2022 18 of 35

An Application:
Uncertainty Model for Decision Making: A Scenario Tree

• iπ is the probability of last-stage scenario i = 1, … , n

• Will use “scenario” as a shorthand for “last-stage scenario”

• Typically a discrete-time and sampled approximation of some
infinite or much larger model

Last-stage scenarios i = 1, … , n

Stages
s = 1,…,T

April 2022 19 of 35

Stochastic Programming

• System walks randomly from the root to some leaf

• At each node there are decision variables, for example

o How much of an investment to buy or sell

o How much to run a power generator, etc...

• ... and constraints that depend on earlier decisions

• Model alternates decisions and uncertainty resolution

Stages
s = 1,…,T

April 2022 20 of 35

Notation

• Replicate decision variables: n copies at every stage

April 2022 21 of 35

Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

April 2022 22 of 35

Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

• i is the space of all variables pertaining to scenario i ;
elements are 1(, ,)i i iTx x x= 

April 2022 23 of 35

Notation

• Replicate decision variables: n copies at every stage

• isx is the vector of decision variables for scenario i at stage s

• i is the space of all variables for scenario i; elements are
 1(, ,)i i iTx x x= 

• 1 n= × ×   is space of all decision variables; elements are
 ()1 11 1 1(, ,) (, ,), , (, ,)n T n nTx x x x x x x= =   

April 2022 24 of 35

 Notation

• i is i without the last stage; elements 1 , 1(, ,)i i i Tz z z −= 

• 1 n= × ×  is the space of all variables except the last
stage: elements ()1 11 1, 1 1 , 1(, ,) (, ,), , (, ,)n T n n Tz z z z z z z− −= =   

i iz ∈

April 2022 25 of 35

Nonanticipativity Subspace

• ⊂  is the subspace of  meeting the nonanticipativity
constraints that is jsz z= whenever scenarios i and j are
indistinguishable at stage s

April 2022 26 of 35

Projecting onto the Nonanticipativity Space

• Following Rockafeller and Wets (1991), we use the following
probability-weighted inner product on  :

1 1 1
(, ,), (, ,) ,n

n n i i ii
z z q q z qπ

=
=∑ 

• With this inner product, the projection map proj : →   is
given by

()
1 1

(,)
(,)

proj () ,
1 1, , , 1, , 1

 where

k k
is j js

j S i sjj S i s

q z

z q i n s Tπ
π

+ +

∈
∈

=

= = = −∑
∑



 

and (,)S i s is the set of scenarios indistinguishable from
scenario i at time s.

April 2022 27 of 35

Applying the ADMM: Progressive Hedging (PH)

• Applying the ADMM to this problem (details omitted) produces

{ }
()

21
2

1 1

1 1 1

arg min () , 1, ,

proj

()

i i

k k k
i i i i i i i i i

x

k k

k k k k

x f x M x w M x z i n

z Mx

w w Mx z

ρ

ρ

+

∈

+ +

+ + +

= + + − =

=

= + −







• Here, : { }i if X → ∪ +∞ represents the objective and all
constraints if it were somehow known in advance that leaf
scenario i will occur

• iM is the matrix that drops the last-stage variables from ix

• M is the matrix that drops all last-stage variables from x

• All steps of this algorithm can be parallelized
(not just the first one)

April 2022 28 of 35

Projective Splitting Instead: Subproblem Processing

Subproblem: (may operate many copies in parallel)

Let min max0 ρ ρ< ≤ < ∞ be fixed

Parameters for subproblem i:

• 1 , 1(, ,)i i i Tz z z −=  : scenario i “target” values (no last stage)

• iw : multipliers (same dimensions as iz)

min max

2

,
[,]

Arg min () ,
2

()
,

Arguments:
Select some

Let

and
Return

i

i i i

i i i i i i i i i
x

i i i i i

i i i i

z w

x f x M x z M x z

y w M x z
x M x y

ρ ρ ρ
ρ

ρ

∈

∈

 ∈ + + − 
 

= + −






Looks like PH subproblem + part of multiplier update

April 2022 29 of 35

Projective-Splitting-Based Algorithm (with Block Asynchrony)

repeat
 Pick some set { }1, ,kI n⊆  of scenarios to process
 for ki I∈ , process scenario i as above: , ,i i i iz w x y


 for {1, , } \ ki n I∈  , keep the previous ,i ix y
 proj ()u x x← −  
 proj ()v y← 

 2 22 2

1 1

n n
i i i ii i

u v u vτ γ π γ π
= =

← + = +∑ ∑

 () ()1
, n

i i i i ii
z x w y z x w yφ π

=
← − − = − −∑ T

 
 if 0φ > then
 Choose some min max[,]ν ν ν∈
 (/)z z vνφ τγ← +
 (/)w w uνφ τ← +
until “termination detected”

• Coordination process is a bit more complicated than PH, but
uses similar operations and can also be parallelized

Called “APH”

April 2022 30 of 35

“AirCond” Example Problem

• Single-product manufacturing/inventory problem

o Has quadratic costs (for back-ordering)

o Generated problem with 5 stages and 1,000,000 leaf
scenarios

• Grouped model scenarios into “bundles”, which the algorithms
treat as if they are scenarios, like

but with 1,000 scenarios per bundle

April 2022 31 of 35

“Bundles per Rank”

• Here, a “rank” is pair of 2 CPU cores

• Can solve one subproblem efficiently

• 1 “bundle per rank”:

o Each rank has one bundle

o For both PH and projective splitting, each rank solves a
supproblem for this bundle at each iteration

• 5 “bundles per rank”:

o Each rank has 5 bundles

o In PH, all have to be solved at each iteration

o In projective splitting, each iteration picks one subproblem
to solve (in a “greedy” way; details omitted)

• 10 “bundles per rank” – similar, but 10 instead of 5

April 2022 32 of 35

Aircond: 1,000,000 Scenarios, 1 Bundle per Rank

• Splitting algorithm: 2,000 CPU cores

• Total with upper and lower bound computation: 6,000 CPU
cores

April 2022 33 of 35

Aircond: 1,000,000 Scenarios, 5 Bundles per Rank

• Splitting algorithm: 400 CPU cores

• Total with bounders: 1,200 cores

April 2022 34 of 35

Aircond: 1,000,000 Scenarios, 10 Bundles per Rank

• Splitting algorithm: 200 CPU cores

• Total with bounders: 600 CPU cores

April 2022 35 of 35

Thanks for your attention!

	A Projective Operator Splitting Approach to Stochastic Programming

