A Projective Operator Splitting Approach
to Stochastic Programming

Jonathan Eckstein
Rutgers University, New Jersey, USA

Portions of the work here are joint with

Benar F. Svaiter - IMPA, Rio de Janeiro
Patrick Combettes - North Carolina State University
Jean-Paul Watson, Lawrence Livermore National Lab

David L. Woodruff, University of California, Davis

B

> RUTGERS

SEAETIRY

RUTGERS

April 2022 1 0of 35

Ronald E. Bruck

e | didn’t know Ronald Bruck

e But | cited 5 of his pioneering papers in my dissertation

o Evaluating resolvents of monotone set-valued operators
(1973)

o Extragradient methods for set-valued monotone operators
(1974)

o Steepest-descent paths for nonsmooth functions (1975)

o Forward-backward splitting with set-valued monotone
operators 1975, 1977

e | was still in high school when most of these were published

April 2022 2 of 35

Firm Nonexpansiveness

e Firm nonexpansiveness (2-averagedness) of operators is a key
tool in proving convergence all proximal algorithms

o The proximal point algorithm / Krasnoselski-Mann iteration
o Douglas-Rachford splitting

o ADMM

o Etc.

e |f Jis the algorithmic map, firm nonexpansiveness means
(v, x") I =T <fe—x - dd=T)(x)— 1d-)|

o If we let x*' =J(x*) and x" is any solution / fixed point of J,

k+1_ * 2

k+1
X

2 .
SHX—X

2
k
— | —x

3

April 2022 30of 35

A Picture

e Rewrite as

k+1_ * 2 2

k+1
X

2
k
+x —x

%k
Hx < Hx —X

xk+1

x*

e The angle between x* —x**' and x" —x**' is at least 90°

April 2022 4 of 35

Firm Nonexpansiveness = Projection

e This means that x**' is the projection of x* onto the halfspace
H, :{er‘ <x—xk+1,xk —xk”>£0} ,

which must contain x

April 2022 5 of 35

Firm Nonexpansiveness = Projection

e Consider any algorithm of the form

x*" = projg (x*) ,

where S, is a closed convex set containing all possible

solutions x

k+1

e Any such process has exactly the same property,

2 2

k+1_ *

k+1
X

2
k
- [—x

sk
Hx < Hx—x

April 2022

6 of 35

Firm Nonexpansiveness = Projection

e Firmly nonexpansive maps can always be interpreted as
projection

e Any projection algorithm looks firmly nonexpansive

e This insight can be used to construct and modify a wide range
of algorithms

e With a little care, the same insight can be extended to any
process with property, for some S >0,

el 2

2 *||2 ko k+l
X SHx—x —,BHx —x"

&
(covers o -averaged operators for o #)

e Equivalent to over- or under-relaxed projection onto a
separating hyperplane

April 2022 7 of 35

General Problem Setting

Consider monotone inclusion problems of the form
0e > GT(Gx)
i=1

where

e H,,...,H are real Hilbert spaces

o T :'H; ='H, are maximal monotone operators, i =1,...,

e G, :'Hy="H, are bounded linear maps, i=1,...,n
Generalizes

min {Zn: /, (Gl.x)}

¥t |53

April 2022

8 of 35

The Primal-Dual Solution Set (Kuhn-Tucker Set)
= {(z,wl,...,w
Or, if we assume that H =H,,G, =1d,

S:{(z,wl,...,wnl)

(Vi=l..m)w eT(Gz), 3" Gw = o}

=1 !

(Vi=1l,...n-D)w eI (G:z), — 2:11 G, w, € Tn(z)}

e This is the set of points satisfying the optimality conditions

e Standing assumption: S is nonempty

e Essentially in E & Svaiter 2009:

S is a closed convex set

e Inthe H ="H,,G, =1d case, streamline notation:

For weH,x---xH, _,, let w = Z

April 2022 9 of 35

Valid Inequalities for S
e Take some x,,y, € 'H. such that y, e T(x,) fori=1,...,n
oIf (z,w)e S, then w, eT(G;z) for i=1,...,n
e Monotonicity implies that <xl. -Gz, —wl.> >0 fori=1,...,n
e Negate and add up:

o(z,w) = ZGZ X, Y, w <0 V(z,w)e S

={ p|p(p)=0}
< p(p)<0 VpeS

April 2022 10 of 35

Confirming that ¢ is Affine

The quadratic terms in ¢(z,w) take the form

n n

> (Gz~w)= (z.-Gw,) :<Z’_iznl: wal.> =(z,-0)=0

e Also true in the H =H,,G, =1d case where we drop the n"
index

o Slightly different proof, same basic idea

April 2022 11 of 35

Generic Projection Method for a
Closed Convex Set S in a Hilbert Space H

Apply the following general template:

e Given p* e H, choose some affine function ¢, with
P (p)<0VpesS

e Project p" onto H, ={ p| ¢,(p) =0}, possibly with an over-
relaxation factor 4, €[¢,2—¢], giving p,.,, and repeat...

P
@, 1s affine
- Hk:{p|(pk(p):()}
¢ (p)<0 Vpes
@ () >0

In our case: we find ¢, by picking some
Xy eH 1yt el (x),i=1,...,n and using the construction above

April 2022 12 of 35

Selecting the Right ¢,
o If we pick ¢, badly, we may “stall”

e Selecting ¢, involves picking some x,y e H.: y* e T(x}),
i=1,...,n

e One key property is
P (2 W) E Y (G2t —xf, v —wf) 20
i=1

with strict inequality if (z*,w")e S

e The first suggestion is “prox” (E & Svaiter 2008 & 2009)

April 2022 13 of 35

Prox Does the Job!
e We have an iterate p* = (z*,w")=(z",w,...,.w")
e Take any ¢, >0 and consider (x;,y;) =Prox, , (G z" +c,w)
A

k ko ok k I;
xX;p ¢y =Giz" ey w

/

(x5, v5)

<€

e Then x +¢, ' =Gz +c, W < c, (¥ —w)=Gz" —x!

e Implying <Gz —x, - > ckHG.zk—x.k

April 2022 14 of 35

Prox Finishes the Job

From

2 2
k ko k K\ k KIF ||k Lk
<Gl.Z — X, —wl.>—cl.k HGZ.Z — X, H =c, |y, —w H >0

we have that

n

Z<Gl.zk —x', —wl.k> >0

i=1
and this inequality is strict unless G.z* = x* and y* =w! for all i,
which means that (z*,w")e S

The entire convergence proof follows from this same relationship.

April 2022 15 of 35

Algorithm Including the Details

e Chooseany 0<A . <A <2
e For k=1,2,...

Process operators to find x', y e R? : y' eT(x)),i=1,...,n

> G, =0l

W ,...,u,) =proj,(x',...,x.), where G={(w,...,w,)
kN ATk

v _Zi:IGi i

maX{Zj:1<Gl.z—xik,yl.k —Wi>,0}

2 2
k n
R
i=1

Pickany A €[4_. , A]

min 2 “ “max

K+ _k k
z =z =40V

k+1 _ _ k k .
w o =w —ABu, i=1,...,n

l

0, =

k
U

e Or, when H, ="H,,G, =1d, one can avoid the proj, operation

April 2022 16 of 35

1.

April 2022

Many Variations Possible in “Process Operators”

Inexact processing: the prox operations may be performed
approximately using a relative error criterion

e E & Svaiter 2009

. Block asynchrony: you do not have to process every operator

at every iteration; you may process some subset and let
(x*,y*)=(x*", y") for the rest, so long as you process each

operator at least once every M iterations
e Combettes & E 2018, E 2017

. Lag asynchrony: you may process operators using (boundedly)

old information (z/“*, w?“*), where k>d(i,k)>k-K
e Combettes & E 2018, E 2017
Non-prox steps: For Lipschitz continuous gradients,

procedures using one or two gradient steps may be
substituted for the prox operations

e Johnstone and E 2022, 2021

also see Tranh-Dinh and Vii 2015 + “mix and match

17 of 35

An Application:
Uncertainty Model for Decision Making: A Scenario Tree

T

Stages

<— Last-stage scenariosi=1, ..., n —>

e 7, is the probability of last-stage scenarioi =1, ... ,n
e Will use “scenario” as a shorthand for “last-stage scenario”

e Typically a discrete-time and sampled approximation of some
infinite or much larger model

April 2022 18 of 35

Stochastic Programming

Stages

e System walks randomly from the root to some leaf

e At each node there are decision variables, for example
o How much of an investment to buy or sell

o How much to run a power generator, etc...
e ... and constraints that depend on earlier decisions

e Model alternates decisions and uncertainty resolution

April 2022 19 of 35

Notation

e Replicate decision variables: n copies at every stage

O O O O O O
O O O O O O
O O OO OO0

Notation

e Replicate decision variables: n copies at every stage

O O O O O O
O O OO0 O O
O O OO OO0

e x, is the vector of decision variables for scenario i at stage s

April 2022 21 of 35

Notation

« Replicate decision variables: » copies at every stage
O O[O0 O O
O OO0 O O
O O O O O

e x, is the vector of decision variables for scenario i at stage s

- J

x, ek

e X is the space of all variables pertaining to scenario i ;
elements are x, =(x,,...,x;;)

April 2022 22 of 35

Notation

e Replicate decision variables: n copies at every stage

0 O

O (

)

_

O O

_

1€

J

x, ek

O 0O O

) (

DANE

)

O O O
/

xeX

e x, is the vector of decision variables for scenario i at stage s

e X is the space of all variables for scenario i; elements are

X, =(X5 s X,7)

e ¥ =X x---xX is space of all decision variables; elements are

.X':(Xl,...,xn) :((xlp-“axlT)a"'9(xn19"‘9'an))

April 2022

23 of 35

Notation

-
O
O

_

O
O

z, €2

r

_

O

o

~

N
© O O
O O (

zeZ

)
Y

O

O

O

O

O

O

e Z is X without the last stage; elements z, = (Zi1sesZipy)

o Z=2 x---xZ 1is the space of all variables except the last
stage: elements z=(z,,...,z,) =((z,

April 2022

,,,,,

Zipg)see s (25 .,Zn,T_l))

Nonanticipativity Subspace

e N c Z is the subspace of Z meeting the nonanticipativity
constraints that z, =z, whenever scenarios i and j are

indistinguishable at stage s

©e—©©©©©
©® ©&©® ©®

April 2022 25 of 35

Projecting onto the Nonanticipativity Space

e Following Rockafeller and Wets (1991), we use the following
probability-weighted inner product on Z:

<(Zla"'DZn)a(qla"'9Qn)> — Z;ﬂi <Zi’qi>

e With this inner product, the projection map proj, : Z - N is
given by

proj,(¢) =z, where

|
ZH = Z ﬂjqf:l i=1....n, s=1,....T -1

IAY
(ZjeS(i,S) T,) Je5(i.s)

and S(i,s) is the set of scenarios indistinguishable from
scenario i at time s.

09090

April 2022 26 of 35

Applying the ADMM: Progressive Hedging (PH)
e Applying the ADMM to this problem (details omitted) produces

“ —argmin] f(x.)+ (M ‘ +ﬁMx—zk2 i=1,...,n
X = gx i\ i*i> Wi 2 || it T~ T ey
X; &t

Zk+1 _ prOjN(Mka)

Wk+1 — Wk + p(Mka . Zk+1)

e Here, f,: X, > Ru{+x} represents the objective and all

constraints if it were somehow known in advance that leaf
scenario i will occur

e M. is the matrix that drops the last-stage variables from x,

e M is the matrix that drops all last-stage variables from x

e All steps of this algorithm can be parallelized
(not just the first one)

April 2022 27 of 35

Projective Splitting Instead: Subproblem Processing
Subproblem: (may operate many copies in parallel)
Let 0<p. . <p. . <oo be fixed
Parameters for subproblem i:
¢ z, =(z,,...,Z,,,) - scenario i “target” values (no last stage)

° W, : multipliers (same dimensions as z,)

)

Looks like PH subproblem + part of multiplier update

Arguments: z,,w, € Z
Select some pe[p,. ,p..]

Let x, € Argmin{fl.(xi)+<Ml.xl.,zl.>+§||Mixl. —z,

andy, =w, + p(M x, —z,)

Return x, = M x,, y,

1

April 2022 28 of 35

Projective-Splitting-Based Algorithm (with Block Asynchrony)

repeat
Pick some set I, —{l,...,n} of scenarios to process

for i e[, process scenario i as above: z,,w, +— X, y,
forie{l,...,n}\ I, keep the previous x,,y.

U <— X —proj,(x)

v <= proj ()

el M =2l 2

g (z=%w=y)=2 1 7 (z-%) (w-»)
if >0 then

u.

I i

Choose some ve[v,_ ,v._]
z<z+(vo/ty)v Called “APH”

ww+ o/ t)u
until “termination detected”

e Coordination process is a bit more complicated than PH, but
uses similar operations and can also be parallelized

April 2022 29 of 35

“AirCond” Example Problem
e Single-product manufacturing/inventory problem
o Has quadratic costs (for back-ordering)

o Generated problem with 5 stages and 1,000,000 leaf
scenarios

e Grouped model scenarios into “bundles”, which the algorithms
treat as if they are scenarios, like

N

but with 1,000 scenarios per bundle

April 2022 30 of 35

“Bundles per Rank”
e Here, a “rank” is pair of 2 CPU cores

e Can solve one subproblem efficiently

e 1 “bundle per rank”:
o Each rank has one bundle

o For both PH and projective splitting, each rank solves a
supproblem for this bundle at each iteration

e 5 “bundles per rank”:
o Each rank has 5 bundles
oln PH, all have to be solved at each iteration

o In projective splitting, each iteration picks one subproblem
to solve (in a “greedy” way; details omitted)

e 10 “bundles per rank” - similar, but 10 instead of 5

April 2022 31 of 35

Aircond: 1,000,000 Scenarios, 1 Bundle per Rank

1210 4 —— PH
APH
1200 A
I
1190 A
o |
i
4
L
1S
= 1180 \
1170 4]

I | I I I I I I I
50 75 100 125 150 175 200 225 250
wall clock time (s.)

e Splitting algorithm: 2,000 CPU cores

e Total with upper and lower bound computation: 6,000 CPU
cores

April 2022 32 of 35

Aircond: 1,000,000 Scenarios, 5 Bundles per Rank

1210 +

1200 ~

1190 ~

1180 A

Objective

1170 A

1160

=

—— PH
APH

—

I
100

I
200

I I
300 400
wall clock time (s.)

e Splitting algorithm: 400 CPU cores

e Total with bounders: 1,200 cores

April 2022

I
300

I
600

33 of 35

Aircond: 1,000,000 Scenarios, 10 Bundles per Rank

1210 - — et
APH
1200 A
1190 4
a
=
]
@
o 1180 -
o
1170 A
=
I I I I I I
200 400 600 800 1000 1200

wall clock time (s.)

e Splitting algorithm: 200 CPU cores
e Total with bounders: 600 CPU cores

April 2022 34 of 35

Thanks for your attention!

April 2022 350f 35

	A Projective Operator Splitting Approach to Stochastic Programming

