A Projective Operator Splitting Approach to Stochastic Programming

Jonathan Eckstein

Rutgers University, New Jersey, USA
Portions of the work here are joint with

Benar F. Svaiter - IMPA, Rio de Janeiro
Patrick Combettes - North Carolina State University Jean-Paul Watson, Lawrence Livermore National Lab
David L. Woodruff, University of California, Davis

RUTGERS
RUTGERS
Rutgers Business School
Newark and New Brunswick

Ronald E. Bruck

- I didn't know Ronald Bruck
- But I cited 5 of his pioneering papers in my dissertation
- Evaluating resolvents of monotone set-valued operators (1973)
- Extragradient methods for set-valued monotone operators (1974)
- Steepest-descent paths for nonsmooth functions (1975)
- Forward-backward splitting with set-valued monotone operators 1975, 1977
- I was still in high school when most of these were published

Firm Nonexpansiveness

- Firm nonexpansiveness ($1 / 2$-averagedness) of operators is a key tool in proving convergence all proximal algorithms
- The proximal point algorithm / Krasnoselski-Mann iteration
- Douglas-Rachford splitting
- ADMM
- Etc.
- If J is the algorithmic map, firm nonexpansiveness means

$$
\left(\forall x, x^{\prime}\right)\left\|J(x)-J\left(x^{\prime}\right)\right\|^{2} \leq\|x-x\|^{2}-\left\|(\operatorname{Id}-J)(x)-(\operatorname{Id}-J)\left(x^{\prime}\right)\right\|^{2}
$$

- If we let $x^{k+1}=J\left(x^{k}\right)$ and x^{*} is any solution / fixed point of J,

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x-x^{*}\right\|^{2}-\left\|x^{k}-x^{k+1}\right\|^{2}
$$

A Picture

- Rewrite as

$$
\left\|x^{k+1}-x^{*}\right\|^{2}+\left\|x^{k}-x^{k+1}\right\|^{2} \leq\left\|x-x^{*}\right\|^{2}
$$

- The angle between $x^{k}-x^{k+1}$ and $x^{*}-x^{k+1}$ is at least 90°

Firm Nonexpansiveness \Rightarrow Projection

- This means that x^{k+1} is the projection of x^{k} onto the halfspace

$$
H_{k}=\left\{x \in \mathcal{H} \mid\left\langle x-x^{k+1}, x^{k}-x^{k+1}\right\rangle \leq 0\right\},
$$

which must contain x^{*}

Firm Nonexpansiveness = Projection

- Consider any algorithm of the form

$$
x^{k+1}=\operatorname{proj}_{S_{k}}\left(x^{k}\right)
$$

where S_{k} is a closed convex set containing all possible solutions x^{*}

- Any such process has exactly the same property,

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x-x^{*}\right\|^{2}-\left\|x^{k}-x^{k+1}\right\|^{2}
$$

Firm Nonexpansiveness = Projection

- Firmly nonexpansive maps can always be interpreted as projection
- Any projection algorithm looks firmly nonexpansive
- This insight can be used to construct and modify a wide range of algorithms
- With a little care, the same insight can be extended to any process with property, for some $\beta>0$,

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x-x^{*}\right\|^{2}-\beta\left\|x^{k}-x^{k+1}\right\|^{2}
$$

(covers α-averaged operators for $\alpha \neq \frac{1}{2}$)

- Equivalent to over- or under-relaxed projection onto a separating hyperplane

General Problem Setting

Consider monotone inclusion problems of the form

$$
0 \in \sum_{i=1}^{n} G_{i}^{*} T_{i}\left(G_{i} x\right)
$$

where

- $\mathcal{H}_{0}, \ldots, \mathcal{H}_{n}$ are real Hilbert spaces
- $T_{i}: \mathcal{H}_{i} \rightrightarrows \mathcal{H}_{i}$ are maximal monotone operators, $i=1, \ldots, n$
- $G_{i}: \mathcal{H}_{0} \rightrightarrows \mathcal{H}_{i}$ are bounded linear maps, $i=1, \ldots, n$

Generalizes

$$
\min _{x \in \mathcal{H}_{0}}\left\{\sum_{i=1}^{n} f_{i}\left(G_{i} x\right)\right\}
$$

The Primal-Dual Solution Set (Kuhn-Tucker Set)

$$
\mathcal{S}=\left\{\left(z, w_{1}, \ldots, w_{n}\right) \mid(\forall i=1, \ldots n) w_{i} \in T_{i}\left(G_{i} z\right), \sum_{i=1}^{n} G_{i}^{*} w_{i}=0\right\}
$$

Or, if we assume that $\mathcal{H}_{n}=\mathcal{H}_{0}, G_{n}=\operatorname{Id}$,
$\mathcal{S}=\left\{\left(z, w_{1}, \ldots, w_{n-1}\right) \mid(\forall i=1, \ldots n-1) w_{i} \in T_{i}\left(G_{i} z\right),-\sum_{i=1}^{n-1} G_{i}^{*} w_{i} \in T_{n}(z)\right\}$

- This is the set of points satisfying the optimality conditions
- Standing assumption: \mathcal{S} is nonempty
- Essentially in E\& Svaiter 2009:
\mathcal{S} is a closed convex set
- In the $\mathcal{H}_{n}=\mathcal{H}_{0}, G_{n}=$ Id case, streamline notation:

$$
\text { For } \boldsymbol{w} \in \mathcal{H}_{1} \times \cdots \times \mathcal{H}_{n-1} \text {, let } w_{n} \triangleq-\sum_{i=1}^{n-1} G_{i}^{*} w_{i}
$$

Valid Inequalities for \mathcal{S}

- Take some $x_{i}, y_{i} \in \mathcal{H}_{i}$ such that $y_{i} \in T_{i}\left(x_{i}\right)$ for $i=1, \ldots, n$
- If $(z, \boldsymbol{w}) \in \mathcal{S}$, then $w_{i} \in T_{i}\left(G_{i} z\right)$ for $i=1, \ldots, n$
- Monotonicity implies that $\left\langle x_{i}-G_{i} z, y_{i}-w_{i}\right\rangle \geq 0$ for $i=1, \ldots, n$
- Negate and add up:

$$
\varphi(z, \boldsymbol{w})=\sum_{i=1}^{n}\left\langle G_{i} z-x_{i}, y_{i}-w_{i}\right\rangle \leq 0 \quad \forall(z, \boldsymbol{w}) \in \mathcal{S}
$$

Confirming that φ is Affine

The quadratic terms in $\varphi(z, \boldsymbol{w})$ take the form

$$
\sum_{i=1}^{n}\left\langle G_{i} z,-w_{i}\right\rangle=\sum_{i=1}^{n}\left\langle z,-G_{i}^{\top} w_{i}\right\rangle=\left\langle z,-\sum_{i=1}^{n} G_{i}^{\top} w_{i}\right\rangle=\langle z,-0\rangle=0
$$

- Also true in the $\mathcal{H}_{n}=\mathcal{H}_{0}, G_{n}=$ Id case where we drop the $n^{\text {th }}$ index
- Slightly different proof, same basic idea

Generic Projection Method for a

Closed Convex Set \mathcal{S} in a Hilbert Space \mathcal{H}

Apply the following general template:

- Given $p^{k} \in \mathcal{H}$, choose some affine function φ_{k} with $\varphi_{k}(p) \leq 0 \forall p \in \mathcal{S}$
- Project p^{k} onto $H_{k}=\left\{p \mid \varphi_{k}(p)=0\right\}$, possibly with an overrelaxation factor $\lambda_{k} \in[\varepsilon, 2-\varepsilon]$, giving p_{k+1}, and repeat...

In our case: we find φ_{k} by picking some
$x_{i}^{k}, y_{i}^{k} \in \mathcal{H}_{i}: y_{i}^{k} \in T_{i}\left(x_{i}^{k}\right), i=1, \ldots, n$ and using the construction above

Selecting the Right φ_{k}

- If we pick φ_{k} badly, we may "stall"
- Selecting φ_{k} involves picking some $x_{i}^{k}, y_{i}^{k} \in \mathcal{H}_{i}: y_{i}^{k} \in T_{i}\left(x_{i}^{k}\right)$, $i=1, \ldots$, n
- One key property is

$$
\begin{aligned}
& \varphi_{k}\left(z^{k}, \boldsymbol{w}^{k}\right) \triangleq \sum_{i=1}^{n}\left\langle G_{i} z^{k}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k}\right\rangle \geq 0 \\
& \text { with strict inequality if }\left(z^{k}, \boldsymbol{w}^{k}\right) \notin \mathcal{S}
\end{aligned}
$$

- The first suggestion is "prox" (E \& Svaiter $2008 \& 2009$)

Prox Does the Job!

- We have an iterate $p^{k}=\left(z^{k}, \boldsymbol{w}^{k}\right)=\left(z^{k}, w_{1}^{k}, \ldots, w_{n}^{k}\right)$
- Take any $c_{i k}>0$ and consider $\left(x_{i}^{k}, y_{i}^{k}\right)=\operatorname{Prox}_{c_{k} T_{i}}\left(G_{i} z^{k}+c_{i k} w_{i}^{k}\right)$

- Then $x_{i}^{k}+c_{i k} y_{i}^{k}=G_{i} z^{k}+c_{i k} w_{i}^{k} \Leftrightarrow c_{i k}\left(y_{i}^{k}-w_{i}^{k}\right)=G_{i} z^{k}-x_{i}^{k}$
- Implying $\left\langle G_{i} z^{k}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k}\right\rangle=c_{i k}\left\|G_{i} z^{k}-x_{i}^{k}\right\|^{2}=c_{i k}^{-1}\left\|y_{i}^{k}-w_{i}^{k}\right\|^{2} \geq 0$

Prox Finishes the Job

From

$$
\left\langle G_{i} z^{k}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k}\right\rangle=c_{i k}\left\|G_{i} z^{k}-x_{i}^{k}\right\|^{2}=c_{i k}^{-1}\left\|y_{i}^{k}-w_{i}^{k}\right\|^{2} \geq 0
$$

we have that

$$
\sum_{i=1}^{n}\left\langle G_{i} z^{k}-x_{i}^{k}, y_{i}^{k}-w_{i}^{k}\right\rangle \geq 0
$$

and this inequality is strict unless $G_{i} z^{k}=x_{i}^{k}$ and $y_{i}^{k}=w_{i}^{k}$ for all i, which means that $\left(z^{k}, \boldsymbol{w}^{k}\right) \in \mathcal{S}$

The entire convergence proof follows from this same relationship.

Algorithm Including the Details

- Choose any $0<\lambda_{\text {min }} \leq \lambda_{\text {max }}<2$
- For $k=1,2, \ldots$

$$
\begin{aligned}
& \text { Process operators to find } x_{i}^{k}, y_{i}^{k} \in \mathbb{R}^{p_{i}}: y_{i}^{k} \in T_{i}\left(x_{i}^{k}\right), i=1, \ldots, n \\
& \left(u_{1}^{k}, \ldots, u_{n}^{k}\right)=\operatorname{proj}_{\mathcal{G}}\left(x_{1}^{k}, \ldots, x_{n}^{k}\right), \text { where } \mathcal{G}=\left\{\left(w_{1}, \ldots, w_{n}\right) \mid \sum_{i=1}^{n} G_{i}^{\top} w_{i}=0\right\} \\
& v^{k}=\sum_{i=1}^{n} G_{i}^{\top} y_{i}^{k} \\
& \theta_{k}=\frac{\max \left\{\sum_{i=1}^{n}\left\langle G_{i} z-x_{i}^{k}, y_{i}^{k}-w_{i}\right\rangle, 0\right\}}{\left\|v^{k}\right\|^{2}+\sum_{i=1}^{n}\left\|u_{i}^{k}\right\|^{2}}
\end{aligned}
$$

Pick any $\lambda \in\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right]$

$$
\begin{aligned}
& z^{k+1}=z^{k}-\lambda_{k} \theta_{k} v^{k} \\
& w_{i}^{k+1}=w_{i}^{k}-\lambda_{k} \theta_{k} u_{i}^{k}, \quad i=1, \ldots, n
\end{aligned}
$$

- Or, when $\mathcal{H}_{n}=\mathcal{H}_{0}, G_{n}=I d$, one can avoid the $\operatorname{proj}_{\mathcal{G}}$ operation

Many Variations Possible in "Process Operators"

1. Inexact processing: the prox operations may be performed approximately using a relative error criterion

- E \& Svaiter 2009

2. Block asynchrony: you do not have to process every operator at every iteration; you may process some subset and let $\left(x_{i}^{k}, y_{i}^{k}\right)=\left(x_{i}^{k-1}, y_{i}^{k-1}\right)$ for the rest, so long as you process each operator at least once every M iterations

- Combettes \& E 2018, E 2017

3. Lag asynchrony: you may process operators using (boundedly) old information ($\left.z^{d(i, k)}, \boldsymbol{w}^{d(i, k)}\right)$, where $k \geq d(i, k) \geq k-K$

- Combettes \& E 2018, E 2017

4. Non-prox steps: For Lipschitz continuous gradients, procedures using one or two gradient steps may be substituted for the prox operations

- Johnstone and E 2022, 2021 also see Tranh-Dinh and Vũ 2015

An Application:

Uncertainty Model for Decision Making: A Scenario Tree

- π_{i} is the probability of last-stage scenario $i=1, \ldots, n$
- Will use "scenario" as a shorthand for "last-stage scenario"
- Typically a discrete-time and sampled approximation of some infinite or much larger model

Stochastic Programming

- System walks randomly from the root to some leaf
- At each node there are decision variables, for example
- How much of an investment to buy or sell
- How much to run a power generator, etc...
- ... and constraints that depend on earlier decisions
- Model alternates decisions and uncertainty resolution

Notation

- Replicate decision variables: n copies at every stage

Notation

- Replicate decision variables: n copies at every stage

- $x_{i s}$ is the vector of decision variables for scenario i at stage s

Notation

- Replicate decision variables: n copies at every stage

- $x_{i s}$ is the vector of decision variables for scenario i at stage s
- \mathcal{X}_{i} is the space of all variables pertaining to scenario i; elements are $x_{i}=\left(x_{i 1}, \ldots, x_{i T}\right)$

Notation

- Replicate decision variables: n copies at every stage

- $x_{i s}$ is the vector of decision variables for scenario i at stage s
- \mathcal{X}_{i} is the space of all variables for scenario i; elements are

$$
x_{i}=\left(x_{i 1}, \ldots, x_{i T}\right)
$$

- $\mathcal{X}=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n}$ is space of all decision variables; elements are

$$
x=\left(x_{1}, \ldots, x_{n}\right)=\left(\left(x_{11}, \ldots, x_{1 T}\right), \ldots,\left(x_{n 1}, \ldots, x_{n T}\right)\right)
$$

Notation

- \mathcal{Z}_{i} is \mathcal{X}_{i} without the last stage; elements $z_{i}=\left(z_{i 1}, \ldots, z_{i, T-1}\right)$
- $\mathcal{Z}=\mathcal{Z}_{1} \times \cdots \times \mathcal{Z}_{n}$ is the space of all variables except the last stage: elements $z=\left(z_{1}, \ldots, z_{n}\right)=\left(\left(z_{11}, \ldots, z_{1, T-1}\right), \ldots,\left(z_{n 1}, \ldots, z_{n, T-1}\right)\right)$

Nonanticipativity Subspace

- $\mathcal{N} \subset \mathcal{Z}$ is the subspace of \mathcal{Z} meeting the nonanticipativity constraints that $z_{i s}=z_{j s}$ whenever scenarios i and j are indistinguishable at stage s

Projecting onto the Nonanticipativity Space

- Following Rockafeller and Wets (1991), we use the following probability-weighted inner product on \mathcal{Z} :

$$
\left\langle\left(z_{1}, \ldots, z_{n}\right),\left(q_{1}, \ldots, q_{n}\right)\right\rangle=\sum_{i=1}^{n} \pi_{i}\left\langle z_{i}, q_{i}\right\rangle
$$

- With this inner product, the projection map $\operatorname{proj}_{\mathcal{N}}: \mathcal{Z} \rightarrow \mathcal{N}$ is given by

$$
\begin{gathered}
\operatorname{proj}_{\mathcal{N}}(q)=z, \text { where } \\
z_{i s}^{k+1}=\frac{1}{\left(\sum_{j \in S(i, s)} \pi_{j}\right)} \sum_{j \in S(i, s)} \pi_{j} q_{j s}^{k+1} \quad i=1, \ldots, n, s=1, \ldots, T-1
\end{gathered}
$$

and $S(i, s)$ is the set of scenarios indistinguishable from scenario i at time s.

Applying the ADMM: Progressive Hedging (PH)

- Applying the ADMM to this problem (details omitted) produces

$$
\begin{aligned}
& x_{i}^{k+1}=\underset{x_{i} \in \mathcal{X}_{i}}{\arg \min }\left\{f_{i}\left(x_{i}\right)+\left\langle M_{i} x_{i}, w_{i}^{k}\right\rangle+\frac{\rho}{2}\left\|M_{i} x_{i}-z_{i}^{k}\right\|^{2}\right\} \quad i=1, \ldots, n \\
& z^{k+1}=\operatorname{proj}_{\mathcal{N}}\left(M x^{k+1}\right) \\
& w^{k+1}=w^{k}+\rho\left(M x^{k+1}-z^{k+1}\right)
\end{aligned}
$$

- Here, $f_{i}: X_{i} \rightarrow \mathbb{R} \cup\{+\infty\}$ represents the objective and all constraints if it were somehow known in advance that leaf scenario i will occur
- M_{i} is the matrix that drops the last-stage variables from x_{i}
- M is the matrix that drops all last-stage variables from x
- All steps of this algorithm can be parallelized (not just the first one)

Projective Splitting Instead: Subproblem Processing

Subproblem: (may operate many copies in parallel)
Let $0<\rho_{\text {min }} \leq \rho_{\text {max }}<\infty$ be fixed
Parameters for subproblem i :

- $z_{i}=\left(z_{i 1}, \ldots, z_{i, T-1}\right)$: scenario i "target" values (no last stage)
- w_{i} : multipliers (same dimensions as z_{i})

$$
\begin{aligned}
& \text { Arguments: } z_{i}, w_{i} \in \mathcal{Z}_{i} \\
& \text { Select some } \rho \in\left[\rho_{\min }, \rho_{\max }\right] \\
& \text { Let } x_{i} \in \underset{x_{i}}{\operatorname{Arg} \min }\left\{f_{i}\left(x_{i}\right)+\left\langle M_{i} x_{i}, z_{i}\right\rangle+\frac{\rho}{2}\left\|M_{i} x_{i}-z_{i}\right\|^{2}\right\} \\
& \text { and } y_{i}=w_{i}+\rho\left(M_{i} x_{i}-z_{i}\right) \\
& \text { Return } \tilde{x}_{i} \doteq M_{i} x_{i}, y_{i} \\
& \hline
\end{aligned}
$$

Looks like PH subproblem + part of multiplier update

Projective-Splitting-Based Algorithm (with Block Asynchrony)

repeat

Pick some set $I_{k} \subseteq\{1, \ldots, n\}$ of scenarios to process
for $i \in I_{k}$, process scenario i as above: $z_{i}, w_{i} \mapsto \tilde{x}_{i}, y_{i}$
for $i \in\{1, \ldots, n\} \backslash I_{k}$, keep the previous \tilde{x}_{i}, y_{i}
$u \leftarrow \tilde{x}-\operatorname{proj}_{\mathcal{N}}(\tilde{x})$
$v \leftarrow \operatorname{proj}_{\mathcal{N}}(y)$
$\tau \leftarrow\|u\|^{2}+\gamma\|\nu\|^{2}=\sum_{i=1}^{n} \pi_{i}\left\|u_{i}\right\|^{2}+\gamma \sum_{i=1}^{n} \pi_{i}\left\|v_{i}\right\|^{2}$
$\phi \leftarrow\langle z-\tilde{x}, w-y\rangle=\sum_{i=1}^{n} \pi_{i}\left(z_{i}-\tilde{x}_{i}\right)^{\top}\left(w_{i}-y_{i}\right)$
if $\phi>0$ then
Choose some $v \in\left[v_{\text {min }}, v_{\text {max }}\right]$
$z \leftarrow z+(v \phi / \tau \gamma) v$
Called "APH"
$w \leftarrow w+(\nu \phi / \tau) u$
until "termination detected"

- Coordination process is a bit more complicated than PH, but uses similar operations and can also be parallelized

"AirCond" Example Problem

- Single-product manufacturing/inventory problem
- Has quadratic costs (for back-ordering)
- Generated problem with 5 stages and 1,000,000 leaf scenarios
- Grouped model scenarios into "bundles", which the algorithms treat as if they are scenarios, like

but with 1,000 scenarios per bundle

"Bundles per Rank"

- Here, a "rank" is pair of 2 CPU cores
- Can solve one subproblem efficiently
- 1 "bundle per rank":
- Each rank has one bundle
- For both PH and projective splitting, each rank solves a supproblem for this bundle at each iteration
- 5 "bundles per rank":
- Each rank has 5 bundles
- In PH, all have to be solved at each iteration
- In projective splitting, each iteration picks one subproblem to solve (in a "greedy" way; details omitted)
- 10 "bundles per rank" - similar, but 10 instead of 5

Aircond: 1,000,000 Scenarios, 1 Bundle per Rank

- Splitting algorithm: 2,000 CPU cores
- Total with upper and lower bound computation: 6,000 CPU cores

Aircond: 1,000,000 Scenarios, 5 Bundles per Rank

- Splitting algorithm: 400 CPU cores
- Total with bounders: 1,200 cores

Aircond: 1,000,000 Scenarios, 10 Bundles per Rank

- Splitting algorithm: 200 CPU cores
- Total with bounders: 600 CPU cores

Thanks for your attention!

