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Ronald E. Bruck 

 
• I didn’t know Ronald Bruck 

• But I cited 5 of his pioneering papers in my dissertation 

o Evaluating resolvents of monotone set-valued operators 
(1973) 

o Extragradient methods for set-valued monotone operators 
(1974) 

o Steepest-descent paths for nonsmooth functions (1975) 

o Forward-backward splitting with set-valued monotone 
operators 1975, 1977 

• I was still in high school when most of these were published 
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Firm Nonexpansiveness 

• Firm nonexpansiveness (½-averagedness) of operators is a key 
tool in proving convergence all proximal algorithms 

o The proximal point algorithm / Krasnoselski-Mann iteration 

o Douglas-Rachford splitting 

o ADMM 

o Etc. 

• If J is the algorithmic map, firm nonexpansiveness means 

( ) 2 2 2, ' ( ) ( ') ' (Id )( ) (Id )( ')x x J x J x x x J x J x∀ − ≤ − − − − −   

• If we let 1 ( )k kx J x+ =  and *x  is any solution / fixed point of J, 
2 2 21 * * 1k k kx x x x x x+ +− ≤ − − −   
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A Picture 

• Rewrite as 
2 2 21 * 1 *k k kx x x x x x+ +− + − ≤ −  

 
• The angle between 1k kx x +−  and * 1kx x +−  is at least 90º 

x*  

xk  

xk + 1  
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Firm Nonexpansiveness Þ Projection 

 
• This means that 1kx +  is the projection of kx  onto the halfspace 

{ }1 1, 0k k k
kH x x x x x+ += ∈ − − ≤  , 

which must contain *x   

x*  

xk  

xk + 1  
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Firm Nonexpansiveness = Projection 

• Consider any algorithm of the form 
1 proj ( )

k

k k
Sx x+ =  , 

where kS  is a closed convex set containing all possible 
solutions *x  

 
• Any such process has exactly the same property, 

2 2 21 * * 1k k kx x x x x x+ +− ≤ − − −  

x*  

xk  

xk+1  
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Firm Nonexpansiveness = Projection 
 

• Firmly nonexpansive maps can always be interpreted as 
projection 

• Any projection algorithm looks firmly nonexpansive 
 

• This insight can be used to construct and modify a wide range 
of algorithms 
 

• With a little care, the same insight can be extended to any 
process with property, for some 0β > , 

2 2 21 * * 1k k kx x x x x xβ+ +− ≤ − − −  

(covers α -averaged operators for 1
2α ≠ ) 

• Equivalent to over- or under-relaxed projection onto a 
separating hyperplane 



April 2022        8 of 35 

General Problem Setting 

Consider monotone inclusion problems of the form 

*

1
0 ( )

n

i i i
i

G T G x
=

∈∑  

where 

• 0, , n   are real Hilbert spaces 

• :i i iT    are maximal monotone operators, 1, ,i n=    

• 0:i iG    are bounded linear maps, 1, ,i n=   
 

Generalizes 

0 1
min ( )

n

i ix i
f G x

∈
=

 
 
 
∑
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The Primal-Dual Solution Set (Kuhn-Tucker Set) 

{ }1 1
( , , , ) ( 1, ) ( ), 0n

n i i i i ii
z w w i n w T G z G w

=
= ∀ = ∈ =∑ *

   

Or, if we assume that 0 , Idn nG= =  , 

{ }1 *
1 1 1

( , , , ) ( 1, 1) ( ), ( )n
n i i i i i ni

z w w i n w T G z G w T z−
− =

= ∀ = − ∈ − ∈∑    

 

• This is the set of points satisfying the optimality conditions 

• Standing assumption:   is nonempty 

• Essentially in E & Svaiter 2009: 

     is a closed convex set      
 

• In the 0 , Idn nG= =   case, streamline notation: 

For 1 1n−∈ × × w , let 
1 *
1

n
n i ii

w G w−

=
−∑   
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Valid Inequalities for    

• Take some ,i i ix y ∈  such that ( )i i iy T x∈  for 1, ,i n=   

• If ( , )z ∈w , then ( )i i iw T G z∈  for 1, ,i n=    

• Monotonicity implies that , 0i i i ix G z y w− − ≥  for 1, ,i n=   

• Negate and add up:  

1
( , ) , 0 ( , )

n

i i i i
i

z G z x y w zϕ
=

= − − ≤ ∀ ∈∑ w w  

 

 
{ }( ) 0

( ) 0

H p p

p p

ϕ

ϕ

= =

≤ ∀ ∈
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Confirming that ϕ  is Affine 

The quadratic terms in ( , )zϕ w  take the form 

1 1 1
, , , , 0 0

n n n

i i i i i i
i i i

G z w z G w z G w z
= = =

− = − = − = − =∑ ∑ ∑T T  

• Also true in the 0 , Idn nG= =   case where we drop the nth 
index 

o Slightly different proof, same basic idea 
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Generic Projection Method for a 
Closed Convex Set   in a Hilbert Space  

Apply the following general template: 

• Given kp ∈, choose some affine function kϕ  with 
( ) 0k p pϕ ≤ ∀ ∈  

• Project kp  onto { }( ) 0k kH p pϕ= = , possibly with an over-
relaxation factor [ ,2 ]kλ ε ε∈ − , giving 1kp + , and repeat… 

 
In our case: we find kϕ  by picking some 

, : ( ), 1, ,k k k k
i i i i i ix y y T x i n∈ ∈ =   and using the construction above 

{ }
 is affine

( ) 0

( ) 0
( ) 0

k

k k

k

k k

H p p

p p
p

ϕ

ϕ

ϕ
ϕ

= =

≤ ∀ ∈

>



1kp +

kp
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Selecting the Right kϕ  

• If we pick kϕ  badly, we may “stall” 

• Selecting  kϕ  involves picking some , : ( )k k k k
i i i i i ix y y T x∈ ∈ ,

1, ,i n=   
 

• One key property is  

1
( , ) , 0

n
k k k k k k

k i i i i
i

z G z x y wϕ
=

− − ≥∑w  

with strict inequality if ( , )k kz ∉w  
 

• The first suggestion is “prox” (E & Svaiter 2008 & 2009) 
 



April 2022        14 of 35 

Prox Does the Job!  

• We have an iterate 1( , ) ( , , , )k k k k k k
np z z w w= = w   

• Take any 0ikc >  and consider ( , ) Prox ( )
ik i

k k k k
i i c T i ik ix y G z c w= +  

 
• Then ( )k k k k k k k k

i ik i i ik i ik i i i ix c y G z c w c y w G z x+ = + ⇔ − = −  

• Implying 
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥   

k k k k
i ik i i ik ix c y G z c w+ = +

( , )k k
i ix y

( , )k k
iz w

iT
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Prox Finishes the Job 

From 
2 21, 0k k k k k k k k

i i i i ik i i ik i iG z x y w c G z x c y w−− − = − = − ≥  

we have that 

1
, 0

n
k k k k

i i i i
i

G z x y w
=

− − ≥∑  

and this inequality is strict unless k k
i iG z x=  and k k

i iy w=  for all i, 
which means that ( , )k kz ∈w  

 

The entire convergence proof follows from this same relationship. 



April 2022        16 of 35 

Algorithm Including the Details 

• Choose any min max0 2λ λ< ≤ <   
• For 1,2,k =  

{ }

{ }

1 1 1 1

1

1
2 2

1

min max
1

, : ( ), 1, ,

( , , ) proj ( , , ) ( , , ) 0

max , ,0

[ , ]

 to find 

,  where 

Pick any 

Process operators ipk k k k
i i i i i

nk k k k
n n n i ii

nk k
i ii

n k k
i i i ii

k nk k
ii

k

x y y T x i n

u u x x w w G w

v G y

G z x y w

v u

z z

θ

λ λ λ

=

=

=

=

+

∈ ∈ =

= = =

=

− −
=

+

∈

=

∑

∑
∑

∑

  T

T

 

  

1 , 1, ,

k k
k k

k k k
i i k k i

v

w w u i n

λ θ

λ θ+

−

= − = 

 

• Or, when 0 , Idn nG= =  , one can avoid the proj  operation  
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Many Variations Possible in “Process Operators” 

1. Inexact processing: the prox operations may be performed 
approximately using a relative error criterion 
• E & Svaiter 2009 

2. Block asynchrony: you do not have to process every operator 
at every iteration; you may process some subset and let 

1 1( , ) ( , )k k k k
i i i ix y x y− −=  for the rest, so long as you process each 

operator at least once every M iterations 
• Combettes & E 2018, E 2017 

3. Lag asynchrony: you may process operators using (boundedly) 
old information ( , ) ( , )( , )d i k d i kz w , where ( , )k d i k k K≥ ≥ −   
• Combettes & E 2018, E 2017 

4. Non-prox steps: For Lipschitz continuous gradients, 
procedures using one or two gradient steps may be 
substituted for the prox operations 
• Johnstone and E 2022, 2021 

also see Tranh-Dinh and Vũ 2015 + “mix and match” 
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An Application: 
Uncertainty Model for Decision Making: A Scenario Tree 

 
• iπ  is the probability of last-stage scenario i  = 1, … , n 

• Will use “scenario” as a shorthand for “last-stage scenario” 

• Typically a discrete-time and sampled approximation of some 
infinite or much larger model 

Last-stage scenarios i = 1, … , n 

Stages 
s = 1,…,T 
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Stochastic Programming 

 
• System walks randomly from the root to some leaf 

• At each node there are decision variables, for example 

o How much of an investment to buy or sell 

o How much to run a power generator, etc...  

• ... and constraints that depend on earlier decisions 

• Model alternates decisions and uncertainty resolution 

Stages 
s = 1,…,T 
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Notation 

• Replicate decision variables: n copies at every stage 
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Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 
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Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

• i  is the space of all variables pertaining to scenario i ; 
elements are 1( , , )i i iTx x x=   
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Notation 

• Replicate decision variables: n copies at every stage 

 
• isx  is the vector of decision variables for scenario i  at stage s 

• i  is the space of all variables for scenario i; elements are 
   1( , , )i i iTx x x=   

• 1 n= × ×    is space of all decision variables; elements are 
   ( )1 11 1 1( , , ) ( , , ), , ( , , )n T n nTx x x x x x x= =     
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 Notation 

 
• i  is i  without the last stage; elements 1 , 1( , , )i i i Tz z z −=   

• 1 n= × ×   is the space of all variables except the last 
stage: elements ( )1 11 1, 1 1 , 1( , , ) ( , , ), , ( , , )n T n n Tz z z z z z z− −= =      

 

i iz ∈  



April 2022        25 of 35 

Nonanticipativity Subspace 

• ⊂   is the subspace of   meeting the nonanticipativity 
constraints that is jsz z=  whenever scenarios i and j are 
indistinguishable at stage s 
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Projecting onto the Nonanticipativity Space 

• Following Rockafeller and Wets (1991), we use the following 
probability-weighted inner product on  : 

1 1 1
( , , ), ( , , ) ,n

n n i i ii
z z q q z qπ

=
=∑   

• With this inner product, the projection map proj : →    is 
given by 

( )
1 1

( , )
( , )

proj ( ) ,
1 1, , , 1, , 1

  where

k k
is j js

j S i sjj S i s

q z

z q i n s Tπ
π

+ +

∈
∈

=

= = = −∑
∑



 

 

and ( , )S i s  is the set of scenarios indistinguishable from 
scenario i at time s. 
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Applying the ADMM:  Progressive Hedging (PH) 

• Applying the ADMM to this problem (details omitted) produces 

{ }
( )

21
2

1 1

1 1 1

arg min ( ) , 1, ,

proj

( )

i i

k k k
i i i i i i i i i

x

k k

k k k k

x f x M x w M x z i n

z Mx

w w Mx z

ρ

ρ

+

∈

+ +

+ + +

= + + − =

=

= + −







 

• Here, : { }i if X → ∪ +∞  represents the objective and all 
constraints if it were somehow known in advance that leaf 
scenario i will occur 

• iM  is the matrix that drops the last-stage variables from ix   

• M is the matrix that drops all last-stage variables from x 

• All steps of this algorithm can be parallelized 
(not just the first one) 
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Projective Splitting Instead:  Subproblem Processing 

Subproblem:  (may operate many copies in parallel) 

Let min max0 ρ ρ< ≤ < ∞ be fixed  

Parameters for subproblem i: 

• 1 , 1( , , )i i i Tz z z −=   : scenario i “target” values (no last stage) 

• iw      : multipliers (same dimensions as iz ) 

min max

2

,
[ , ]

Arg min ( ) ,
2

( )
,

Arguments:  
Select some 

Let 

and 
Return  

i

i i i

i i i i i i i i i
x

i i i i i

i i i i

z w

x f x M x z M x z

y w M x z
x M x y

ρ ρ ρ
ρ

ρ

∈

∈

 ∈ + + − 
 

= + −






 

Looks like PH subproblem + part of multiplier update 
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Projective-Splitting-Based Algorithm (with Block Asynchrony) 

repeat 
 Pick some set { }1, ,kI n⊆   of scenarios to process 
 for ki I∈ , process scenario i as above: , ,i i i iz w x y

  
 for {1, , } \ ki n I∈  , keep the previous ,i ix y  
 proj ( )u x x← −     
 proj ( )v y←   

 2 22 2

1 1

n n
i i i ii i

u v u vτ γ π γ π
= =

← + = +∑ ∑  

 ( ) ( )1
, n

i i i i ii
z x w y z x w yφ π

=
← − − = − −∑ T

    
 if 0φ >  then 
  Choose some min max[ , ]ν ν ν∈  
  ( / )z z vνφ τγ← +   
  ( / )w w uνφ τ← +  
until “termination detected” 

• Coordination process is a bit more complicated than PH, but 
uses similar operations and can also be parallelized 

Called “APH” 
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“AirCond” Example Problem 

• Single-product manufacturing/inventory problem 

o Has quadratic costs (for back-ordering) 

o Generated problem with 5 stages and 1,000,000 leaf 
scenarios 
 

• Grouped model scenarios into “bundles”, which the algorithms 
treat as if they are scenarios, like 

 
but with 1,000 scenarios per bundle 
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“Bundles per Rank” 

• Here, a “rank” is pair of 2 CPU cores 

• Can solve one subproblem efficiently 
 

• 1 “bundle per rank”: 

o Each rank has one bundle 

o For both PH and projective splitting, each rank solves a 
supproblem for this bundle at each iteration 

• 5 “bundles per rank”: 

o Each rank has 5 bundles 

o In PH, all have to be solved at each iteration 

o In projective splitting, each iteration picks one subproblem 
to solve (in a “greedy” way; details omitted) 

• 10 “bundles per rank” – similar, but 10 instead of 5 
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Aircond: 1,000,000 Scenarios, 1 Bundle per Rank 

 
• Splitting algorithm: 2,000 CPU cores 

• Total with upper and lower bound computation: 6,000 CPU 
cores 
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Aircond: 1,000,000 Scenarios, 5 Bundles per Rank 

 
• Splitting algorithm: 400 CPU cores 

• Total with bounders: 1,200 cores 
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Aircond: 1,000,000 Scenarios, 10 Bundles per Rank 

 
• Splitting algorithm: 200 CPU cores 

• Total with bounders: 600 CPU cores 
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Thanks for your attention! 
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