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Linear Functional Analysis

Any first course on Linear Functional Analysis1 will cover the
fundamental theorems, then will continue to some major
applications. What are these fundamental theorems?

1 Hahn-Banach Theorem
2 Open Mapping Theorem
3 Closed Graph Theorem
4 Banach-Steinhaus Theorem
5 Riesz’s Representation Theorem (in Hilbert spaces)

It is amazing and rare to consider these theorems in the metric
nonlinear setting. For example, is there a study of the
Hahn-Banach theorem in metric spaces?

1E. Kreyszig, Introductory Functional Analysis with Applications, John
Wiley & Sons, New York-Chichester-Brisbane Toronto, 1978.
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Hahn-Banach theorem in metric spaces

While investigating an extension of the Hahn-Banach theorem
to metric spaces, Aronszajn and Panitchpakdi1 discovered the
concept of hyperconvexity or injectivity. The main result of their
investigation is the fact that hyperconvex metric spaces are
absolute nonexpansive retracts (ANR).

Examples of hyperconvex metric spaces are the SNCF metric
also known as the Paris metric which is an example of the
R-tree metric spaces.

1N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous
transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956),
405-439.
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100th Anniversary
In 1922, Banach1 published the following result (known as the
Banach Contraction Principle):

Theorem
Let (M,d) be a complete metric space and T : M → M a
contraction mapping, i.e., there exists K < 1 such that

d
(

T (x),T (y)
)
≤ K d(x , y)

for all x , y ∈ M. Then T has a unique fixed point ω (i.e.,
T (ω) = ω), and for each x ∈ M, we have

d
(

T n(x), ω
)
≤ K n

1 − K
d
(

T (x), x
)
,

which implies lim
n→∞

T n(x) = ω.

1S. Banach, Sur les opérations dans les ensembles abstraits et leur
application aux équations intégrales, Fund. Math. 3, 133-181 (1922).
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Banach Contraction Principle

Therefore, the originality of Banach is to extend the known
result in the context of functions spaces to the newly introduced
abstract metric spaces1.

Very early on, the relaxing of K < 1 was investigated.

The most significant breakthrough happened little more than 40
years later in 1965 in the case K = 1 (in this case, the
mappings are known as nonexpansive).

1M. A. Khamsi, M. Pouzet, A fixed point theorem for commuting families of
relational homomorphisms. Applications to metric spaces, ordered sets and
oriented graphs, Topology and its Applications, 273 (2020) 106970

M. A. Khamsi, Khalifa University Linear Functional Analysis in: Metric Spaces



Banach Contraction Principle

Therefore, the originality of Banach is to extend the known
result in the context of functions spaces to the newly introduced
abstract metric spaces1.

Very early on, the relaxing of K < 1 was investigated.

The most significant breakthrough happened little more than 40
years later in 1965 in the case K = 1 (in this case, the
mappings are known as nonexpansive).

1M. A. Khamsi, M. Pouzet, A fixed point theorem for commuting families of
relational homomorphisms. Applications to metric spaces, ordered sets and
oriented graphs, Topology and its Applications, 273 (2020) 106970

M. A. Khamsi, Khalifa University Linear Functional Analysis in: Metric Spaces



Banach Contraction Principle

Therefore, the originality of Banach is to extend the known
result in the context of functions spaces to the newly introduced
abstract metric spaces1.

Very early on, the relaxing of K < 1 was investigated.

The most significant breakthrough happened little more than 40
years later in 1965 in the case K = 1 (in this case, the
mappings are known as nonexpansive).

1M. A. Khamsi, M. Pouzet, A fixed point theorem for commuting families of
relational homomorphisms. Applications to metric spaces, ordered sets and
oriented graphs, Topology and its Applications, 273 (2020) 106970

M. A. Khamsi, Khalifa University Linear Functional Analysis in: Metric Spaces



The case of nonexpansive mappings

The fixed point problem for nonexpansive mappings may be
stated as:

Problem
Let (X ,d) be a metric space and T : X → X be a nonexpansive
mapping, i.e.

d(T (x),T (y)) ≤ d(x , y),

for any x , y ∈ X. When does T have a fixed point?

It is easy to see that in general the answer is NO. So we made
a small change to this problem to come up with:

Problem
Let (X , ∥.∥) be a Banach space and C a nonempty closed
convex subset of X . Let T : C → C be a nonexpansive
mapping. When does T have a fixed point in C?
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The case of nonexpansive mappings

It is easy to see that it is not enough to have bounded closed
convex domains to ensure that a nonexpansive mapping has a
fixed point. It was natural to add some compactness
assumption. Since nonexpansive mappings are continuous,
compactness for the strong topology will reduce the problem to
the Brouwer’s fixed point theorem. The fixed point problem for
nonexpansive mappings evolved to become:

Problem
Let (X , ∥.∥) be a Banach space and C a nonempty
weakly-compact convex subset of X . Let T : C → C be a
nonexpansive mapping. When does T have a fixed point in C?

Note that in this problem nonexpansiveness is metric in nature
while weak-compactness and convexity are closely related to
the linear structure of the underlined space.
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The case of nonexpansive mappings: 1965
In 1965, three nice and powerful theorems were discovered
which set the ground for the modern metric fixed point theory.
The first two are similar discovered by Browder and Göhde:

Theorem
If K is a nonempty bounded closed convex subset of a
uniformly convex Banach space (X , ∥.∥) and if T : K → K is
nonexpansive, then T has a fixed point. Moreover the set of
fixed points of T is a closed convex subset of K .

Recall that a Banach space (X , ∥.∥) is said to be uniformly
convex provided for any ε > 0, there exists δ > 0 such that∥∥∥∥x + y

2

∥∥∥∥ ≤ 1 − δ

whenever ∥x∥ ≤ 1, ∥y∥ ≤ 1 and ∥x − y∥ ≥ ε.
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Uniformly convex metric spaces

May be the first to think of this concept are Sekowski and
Stachura1 working with Goebel who asked them to look into a
recent paper of Vigué2. This work led to a wonderful book on
the subject3. These works may be seen as the initiators of what
is known as the study of CAT(0) metric spaces by metric fixed
point theorists.

1K. Goebel, T. Sekowski, and A. Stachura, Uniform convexity of the
hyperbolic metric and fixed points of holomorphic mappings in the Hilbert
ball, Nonlinear Analysis, (4 (1980), 1011-1021.

2J.-P. Vigué, Points fixes d’applications holomorphes dans un produit fini
de boules unités d’espaces de Hilbert, Ann. Mat. Pura Appl. 137 (1984),
245-256.

3K. Goebel, and S. Reich, Uniform Convexity, Hyperbolic Geometry, and
Nonexpansive Mappings, Series of Monographs and Textbooks in Pure and
Applied Mathematics, Vol.83, Dekker, New York, 1984.
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The case of nonexpansive mappings: 1965

The third result is far more powerful and was discovered by
Kirk:

Theorem
Let K be a weakly-compact convex subset of a Banach space
(X , ∥.∥). Assume that K enjoys the normal structure property.
Then any nonexpansive mapping T : K → K has a fixed point.

First note that uniformly convex Banach spaces are reflexive,
then any bounded closed convex nonempty subset is
weakly-compact. Moreover, any bounded closed convex
nonempty subset of a uniformly convex Banach space enjoys
the normal structure property.

Therefore Kirk’s fixed point result is more general than Browder
and Göhde’s fixed point result.
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The case of nonexpansive mappings

The normal structure is metric in nature and was introduced by
Brodskii and Milman in 1948. Indeed, let (M,d) be a metric
space. Let C be a nonempty bounded subset of M not reduced
to one point. C is said to be diametral if and only if

R(c) = sup
y∈C

d(c, y) = sup
x ,y∈C

d(x , y) = diam(C),

for any c ∈ C.

Let (X , ∥.∥) be a Banach space. Let K be a bounded nonempty
closed convex subset of X . K is said to satisfy the normal
property if and only if K does not contain any diametral closed
convex nonempty subset not reduced to one point. X is said to
satisfy the normal property if and only if X does not contain any
diametral bounded closed convex nonempty subset not
reduced to one point.
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The case of nonexpansive mappings

When the Banach space is the Hilbert space H, a stronger
normal structure property is satisfied. Indeed, let C be a
bounded nonempty closed convex subset of H not reduced to
one point. Then there exists x ∈ C such that

R(x) = sup
y∈C

∥x − y∥ ≤
√

2
2

diam(C) < diam(C).

This property gave birth to the uniform normal structure
property, i.e., a Banach space (X , ∥.∥) satisfies the uniform
normal structure if there exists α < 1 such that for any bounded
nonempty closed convex subset C of X , there exists x ∈ C
such that

R(x) = sup
y∈C

∥x − y∥ ≤ α diam(C).
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The case of nonexpansive mappings

Most of the research in metric fixed point theory that followed
the publications of the three main fixed point theorems focused
on the study of the normal structure property in Banach
spaces. Very early on, some asked how an extension of Kirk’s
fixed point theorem to metric spaces will look like?

The main ingredient to be considered for this extension are:
1 convexity
2 weak-compactness

because nonexpansiveness and normal structure are metric in
nature.

Of the two, convexity is may be the easiest to consider. But the
weak-compactness is the one that is still eluding
mathematicians till now.
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Convexity in Metric Spaces

Before we dive into this problem, let us say something about
the 1970 extension given by Takahashi1.

Definition
Let (X ,d) be a metric space. The function
W : X × X × [0,1] → X defines a convexity structure provided

d(u,W (x , y , λ)) ≤ λd(u, x) + (1 − λ)d(u, y),

for any u, x , y ∈ X and λ ∈ [0,1]. A subset K of X is said to be
convex if W (x , y , λ) ∈ K for all x , y ∈ K and λ ∈ [0,1].

Note that we have

d(x ,W (x , y , λ)) = (1−λ)d(x , y) and d(y ,W (x , y , λ)) = λd(x , y)

1W. Takahashi, A convexity in metric space and nonexpansive mappings,
I. Kodai Math. Sem. Rep. 22, No 2, 142–149 (1970).
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Convexity in Metric Spaces

Takahashi definition of convexity is more restrictive and mimic
the natural linear convexity. In fact, an earlier definition of
convexity in metric spaces was introduced by Menger1:

Definition
A (X ,d) be a metric space is said to be a convex metric space
in the sense of Manger if or all x , y ∈ K , x ̸= y , there exists
z ∈ X such that z ̸= x and z ̸= y and

d(x , y) = d(x , z) + d(z, y).

Many other definitions of convexity in metric spaces are offered
which are closely connected to Menger convexity and the linear
convexity. An original approach was used by Penot.

1K. Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100
(1928) 73-163.
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Convexity in Metric Spaces

In his extension of Kirk’s fixed point theorem, Penot1 used a
convexity concept which is set theoretical:

Definition
Let (X ,d) be a metric space. A family C of subsets of a set X is
called an (abstract) convexity structure if
(1) Both ∅ and X are in C.
(2) C is stable under intersections; that is, if {Dα}α∈I is any

nonempty subfamily of C then
⋂
α∈I

Dα ∈ C.

1J.P. Penot, Fixed point theorem without convexity, Analyse Non-Convexe
(1977), Bull. Soc. Math. France, Mémoire 60, 129–152 (1979)

M. A. Khamsi, Khalifa University Linear Functional Analysis in: Metric Spaces



Convexity in Metric Spaces

In his extension of Kirk’s fixed point theorem, Penot1 used a
convexity concept which is set theoretical:

Definition
Let (X ,d) be a metric space. A family C of subsets of a set X is
called an (abstract) convexity structure if
(1) Both ∅ and X are in C.
(2) C is stable under intersections; that is, if {Dα}α∈I is any

nonempty subfamily of C then
⋂
α∈I

Dα ∈ C.

1J.P. Penot, Fixed point theorem without convexity, Analyse Non-Convexe
(1977), Bull. Soc. Math. France, Mémoire 60, 129–152 (1979)
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Convexity in Metric Spaces

In his work, Penot assumed that convexity structures contain
closed balls, i.e., closed balls are convex. Note that the
intersection of convexity structures is also a convexity structure.
The smallest convexity structure which contains the closed
balls is denoted A(X ) and is known as the family of admissible
subsets, i.e., intersection of closed balls.

When X is a Banach space, we have naturally two convexity
structures: C(X ) and A(X ) which are the family of closed
convex subsets and admissible subsets respectively.

The power behind using admissible subsets instead of convex
subsets is very deep and the case when X = ℓ∞ illustrates this
profoundly.

Convex subsets in the sense of Takahashi form a convexity
structure in the sense of Penot. But the converse may not be
true in general.
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Weak-compactness in metric spaces

Once, we defined convex subsets, we use the fundamental
theorem of Smulian1 which states:

Smulian Characterization
a Banach space X is reflexive if and only if any decreasing
sequence of nonempty bounded closed convex subsets of X
has a nonempty intersection.

Takahashi used this characterization and called it Property (C)
and Penot used it to define the compactness of a convexity
structure.

The normal structure property is metric in nature, therefore
both Takahashi and Penot had no issues in defining it for
convex bounded subset not reduced to one point.

1V. Smulian, On the principle of inclusion in the space of the type (B), Mat.
Sb. 5 (47) (1939), 327-328. (Russian) MR 1, 335.

M. A. Khamsi, Khalifa University Linear Functional Analysis in: Metric Spaces



Weak-compactness in metric spaces

Once, we defined convex subsets, we use the fundamental
theorem of Smulian1 which states:

Smulian Characterization
a Banach space X is reflexive if and only if any decreasing
sequence of nonempty bounded closed convex subsets of X
has a nonempty intersection.

Takahashi used this characterization and called it Property (C)
and Penot used it to define the compactness of a convexity
structure.

The normal structure property is metric in nature, therefore
both Takahashi and Penot had no issues in defining it for
convex bounded subset not reduced to one point.

1V. Smulian, On the principle of inclusion in the space of the type (B), Mat.
Sb. 5 (47) (1939), 327-328. (Russian) MR 1, 335.

M. A. Khamsi, Khalifa University Linear Functional Analysis in: Metric Spaces



Weak-compactness in metric spaces

Once, we defined convex subsets, we use the fundamental
theorem of Smulian1 which states:

Smulian Characterization
a Banach space X is reflexive if and only if any decreasing
sequence of nonempty bounded closed convex subsets of X
has a nonempty intersection.

Takahashi used this characterization and called it Property (C)
and Penot used it to define the compactness of a convexity
structure.

The normal structure property is metric in nature, therefore
both Takahashi and Penot had no issues in defining it for
convex bounded subset not reduced to one point.

1V. Smulian, On the principle of inclusion in the space of the type (B), Mat.
Sb. 5 (47) (1939), 327-328. (Russian) MR 1, 335.

M. A. Khamsi, Khalifa University Linear Functional Analysis in: Metric Spaces



Weak-compactness in metric spaces

Once, we defined convex subsets, we use the fundamental
theorem of Smulian1 which states:

Smulian Characterization
a Banach space X is reflexive if and only if any decreasing
sequence of nonempty bounded closed convex subsets of X
has a nonempty intersection.

Takahashi used this characterization and called it Property (C)
and Penot used it to define the compactness of a convexity
structure.

The normal structure property is metric in nature, therefore
both Takahashi and Penot had no issues in defining it for
convex bounded subset not reduced to one point.

1V. Smulian, On the principle of inclusion in the space of the type (B), Mat.
Sb. 5 (47) (1939), 327-328. (Russian) MR 1, 335.

M. A. Khamsi, Khalifa University Linear Functional Analysis in: Metric Spaces



Kirk’s FPT in metric spaces

Once all the ingredients are in place, we can state the extension
of Kirk’s fixed point theorem for nonexpansive mappings in
metric spaces defined on a convex domain (in the sense of
Takahashi or Penot). The interest into the weak-topology in
metric spaces stopped right there. So it was more about a
mean to get the metric version of Kirk’s fixed point theorem.

In 1988, I looked at this concept (weak-compactness in metric
spaces) and asked few questions that find their roots in Banach
spaces. This was the first time such approach was considered.
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Reflexivity in metric spaces

In 1984, Maluta1 proved that a Banach space which possesses
the uniform normal structure property is reflexive. The proof is
highly linear in the sense that Maluta used the properties that
characterize the reflexivity in Banach spaces (James
characterization of reflexivity).

These characterizations can not be used as is in metric spaces.

In 1989, I looked at Maluta’s result in metric spaces2.

1E. Maluta, Uniformly normal structure and related coefficients, Pacific J.
Math. vol. Ill ♯2 (1984), 357-369.

2M.A. Khamsi, On metric spaces with uniform normal structure, Proc.
A.M.S., Vol. 106(1989), 723-726.
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Any questions?
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