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Background information

1 Minimax inequality’s introduction by Ky Fan [18] in 1972.

2 The term Equilibrium problem by Blum and Oetlli [5], 1994.

3 Further work on the EP given by Muu and Oetlli [27].

Standard examples of the EP.

Minimization problem.

Variational inequality.

Fixed point problem
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Problem formulation

Let g : K × K → R be a bifunction such that g(x , x) = 0 for all
x ∈ K , where K is a nonempty subset of a topological space X .
Then, the EP is to find a point x ∈ K such that

g(x , y) ≥ 0 ∀ y ∈ K . (1)

We denote by Sol(g ,K ), the solution set of the EP (1).
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Why Hadamard Manifold?

The study of variational inequality, equilibrium and other related
optimization problems are receiving several attentions of
researchers in the framework of Riemannian manifolds. Thus,
methods and ideas are being extended from linear settings to this
more generalized settings.
So why Hadamard manifold?

convexity

constraints
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Introduction

Colao et al. [12] in 2012 introduced the EP to Hadamard
manifold.

Consistency of the problem (using Fan’s KKM lemma).

By replacing M with X in (1), we arrive at Colao et al. [12]
formulation of the EP.
After the work of Colao et al. [12], there has been

(2016) Tang et al. [38],

(2017) Salahuddin [34],

(2016) Zhou and Huang [41].
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Iterative methods

The development of effective iterative algorithm for approximating
the solution of an optimization problem is another interesting
direction. Some iterative algorithms for EP

(1976) Extragradient Method (EGM) by Korpelevich [22]

(2011) Subgradient Extragradient Method by Censor et al. [9]
(SEGM).

Tseng extragradient method

Projection extragradient method and so on.

For EPs, Quoc et al. [39] (2008) intoduced an extragradient-like
for approximating a solution of a pseudomonotone EP.

S. Reich and O.K. Oyewole Equilibrium problem
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More contributions

Recent works in this direction

1 (2014) Nguyen et al. [28] introduced a method for finding a
common solution of a fixed point and equilibrium problem
based on the extragradient method in Quoc et al. [39]

2 (2021) Habib et al. [31] introduced an inertial viscosity
subgradient extragradient algorithm for solving the equilibrium
problem.
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Results in Manifold

(2016) Cruz et al. [14] extended the result of Nguyen et al. [28] to
the settings of Hadmard manifold by considering the following
algorithm: Let x1 ∈ K and λn > 0, compute

yn = arg min
y∈M

{
g(xn, y) + 1

2λn
d2(xn, y)

}
,

xn+1 = arg min
y∈M

{
g(yn, y) + 1

2λn
d2(xn, y)

}
,

such that 0 ≤ λn < µ < min{ 1
c1
, 1
c2
} where c1 > 0 and c2 > 0 are

the Lipschitz constants with respect to the bifunction g . By
replacing d(x , y) with ‖x − y‖ we obtain the method of Nguyen et
al. [28].
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Introduction

Fan et al. [17] method.
Choose x1 ∈ K and λ > 0, µ ∈ (0, 1). Given the current iterate
xn ∈ K and λn(n ≥ 0). Calculate xn+1, λn+1 as

yn = arg min
y∈K

{
f (xn, y) + 1

2λn
d2(xn, y)

}
,

xn+1 = arg min
y∈K

{
f (yn, y) + 1

2λn
d2(xn, y)

}
and

λn+1 =

{
λn,

µ[d2(xn, yn) + d2(xn+1, yn)]

2[g(xn, xn+1)− g(xn, yn)− g(yn, xn+1)]+

}
.
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Results in Manifold

Ali-Akbari [1] method.
Choose an initial point x0 ∈ K and λ such that

0 < λ < min
{

1
2c1
, 1
2c2

}
. Assume that xn ∈ K and we calculate

xn+1 ∈ K as follows:
yn = arg min

y∈K

{
f (xn, y) + 1

2λn
d2(xn, y)

}
,

xn+1 = arg min
y∈Tn

{
f (yn, y) + 1

2λn
d2(xn, y)

}
where Tn = {y ∈ M : 〈exp−1yn xn − λvn, exp−1yn y〉 ≤ 0} and
vn ∈ ∂2g(xn, yn).
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Motivation

Methods:

(1) Subgradient method of Censor et al. [9].

(2) viscosity approach [2, 15, 20].

(3) Colao et al. [12], Ali-Akbari [1], Fan et al. [17].

(4) Inertial technique [29].

Applications:

1 Competitive exchange economy

2 Product pricing

3 Fractional programming and so on.
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Definitions and Lemmas

Let M be a m-dimnesional manifold and x ∈ M, let TxM be the
tangent space of M at x ∈ M. We denote by TM =

⋃
x∈M TxM

the tangent bundle of M. An inner product R〈·, ·〉 is called the
Riemannian metric on TxM. The corresponding norm to the inner
product Rx〈·, ·〉 on TxM is denoted by ‖ · ‖x .
Given a piecewise smooth curve γ : [a, b]→ M joining x to y (i.e
γ(a) = x and γ(b) = y), we define the length l(γ) of γ by

l(γ) =
∫ b
a ‖γ

′(t)‖dt. Let γ be a smooth curve in M. A vector field
X along γ is said to be parallel if ∇γ′X = 0, where 0 is the zero
tangent vector (see [33]).
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Definitions and Lemmas

1 [33] For a complete Riemannian manifold M, then the
exponential map expx : TxM → M at x ∈ M is defined by
expx v = γv (1, x), ∀ v ∈ TxM, where γv (·, x) is the geodesic
starting from x with velocity v (i.e γv (0, x) = x and
γ′v (0, x) = v). Then, for any t, we have expx tv = γv (t, x)
and expx 0 = γv (0, x) = x .

2 The mapping expx is differentiable on TxM for every x ∈ M.
The exponential map has an inverse exp−1x : M → TxM. For
any x , y ∈ M, we have d(x , y) = ‖ exp−1y x‖ = ‖ exp−1x y‖,

3 A complete simply connected Riemannian manifold of
nonpositive sectional curvature is said to be an Hadamard
manifold. From now, we denote by M a finite dimensional
Hadamard manifold.
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Definitions and Lemmas

We now present some useful results and definition which will be
useful in the convergence analysis of our main result.

Proposition

[33]. Let x ∈ M. The exponential mapping expx : TxM → M is a
diffeomorphism, for any two points x , y ∈ M, there exists a unique
normalized geodesic joining x to y , which is expressed by the
formula

γ(t) = expx t exp−1x y , ∀ t ∈ [0, 1].
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Definitions and Lemmas

The following definitions can be found in [5, 25]. Let K be a
nonempty convex subset of M. A bifunction g : M ×M → R is
said to be

(i) monotone on K , if

〈g(x , y) + g(y , x) ≤ 0, ∀ x , y ∈ K ;

(ii) pseudomontone on K , if

g(x , y) ≥ 0⇒ g(y , x) ≤ 0, ∀ x , y ∈ K ;

(iii) Lipschitz-type continuous, if there exist constants c1 > 0 and
c2 > 0, such that

g(x , y)+g(y , z) ≥ g(x , z)−c1d2(x , y)−c2d2(y , z) ∀ x , y , z ∈ K .

S. Reich and O.K. Oyewole Equilibrium problem
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Definitions and Lemmas

For solving the EP (1), we make the following assumptions for g
on K :

(A1) g is pseudomonotone on K and g(x , x) = 0 for all x ∈ M;

(A2) g(·, y) is upper semicontinuous for all y ∈ M;

(A3) g(x , ·) is convex and subdifferentiable for all fixed x ∈ M;

(A4) g satisfies the Lipschitz-type condition on M i.e
g(x , y) + g(y , z) ≥ g(x , z)− c1d

2(x , y)− c2d
2(y , z).

S. Reich and O.K. Oyewole Equilibrium problem
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Definitions and Lemmas

Proposition

Let M be an Hadamard manifold and x ∈ M. Let
ρx(y) = 1

2d
2(x , y), then ρx(y) is strictly convex and its gradient at

y is given by
∂ρx(y) = − exp−1y x .

Proposition

Let K be a nonempty convex subset of an Hadamard manifold M
and h : K → R be a convex subdifferentiable and lower
semicontinuous on K . Then a point x solves the convex
minimization problem

min
x∈K

h(x) ⇐⇒ 0 ∈ ∂h(x) + NK (x).
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Definitions and Lemmas

Lemma

[37] Let x , y ∈ K and λ ∈ [0, 1]. Then, the following properties
hold on K .

(i) ‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2− λ(1− λ)‖x − y‖2;

(ii) ‖x ± y‖2 = ‖x‖2 ± 2〈x , y〉+ ‖y‖2;

(iii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y , x + y〉.

S. Reich and O.K. Oyewole Equilibrium problem
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Definitions and Lemmas

Lemma

[32] Let {an} be a sequence of nonnegative real numbers, {αn} be

a sequence of real numbers in (0, 1) such that
∞∑
n=1

αn =∞ and

{bn} be a sequence of real numbers. Assume that

an+1 ≤ (1− αn)an + αnbn, ∀ n ≥ 1.

If lim sup
k→∞

bnk ≤ 0 for every subsequence {ank} of {an} satisfying

the condition
lim inf
k→∞

(ank+1 − ank ) ≥ 0,

then lim
n→∞

an = 0.
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Main result

In this section, we propose a strong convergent algorithm for
approximating a solution of the EP (1) and then discuss its
convergence analysis. The solution set Sol(g ,K ) is closed and
convex [12, 34]. We assume that Sol(g ,K ) is nonempty.
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Main result

Algorithm

Inertial subgradient extragradient method for EP(ISEMEP)
Initialization: Choose x0, x1 ∈ K , λ1 > 0, µ ∈ (0, 1), a
nonnegative sequence of real numbers {αn} such that and
∞∑
n=1

αn < +∞ and βn ⊂ (0, 1) satisfying

(C1) lim
n→∞

βn = 0 and
∞∑
n=1

βn =∞.

Step 1: Given xn, xn−1 and λn. Computewn = γ0n(θn),

yn = arg min
y∈M

{
g(wn, y) + 1

2λn
d2(wn, y)

}
.

(2)

S. Reich and O.K. Oyewole Equilibrium problem
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Main result

Algorithm

If yn = wn, then stop. Otherwise go to the next step.
Step 2: Define the half space Tn by

Tn := {y ∈ M : 〈exp−1yn wn − λnvn, expy
yn〉 ≤ 0}

with vn ∈ ∂2g(wn, yn) and compute

zn = arg min
y∈Tn

{
g(yn, y) +

1

2λn
d2(wn, y)

}
. (3)

Step 3: Compute

xn+1 = γ1n(1− βn), ∀ n ≥ 0, (4)

S. Reich and O.K. Oyewole Equilibrium problem
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Main result

Algorithm

where γ1n : [0, 1]→ M is the geodesic joining f (xn) to zn, that is
γ1n(0) = f (xn) and γ1n(1) = zn for all n ≥ 0. Let
dn = g(wn, zn)− g(wn, yn)− g(yn, zn). Then,

λn+1 =

{
min

{
λn + αn,

µ[d2(yn,wn)+d2(zn,yn)]
2dn

}
, dn > 0,

λn + αn, otherwise.
(5)

Set n := n + 1 and return to Step 1.

S. Reich and O.K. Oyewole Equilibrium problem
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Main result

Remark

We observe from Algorithm 6, that the method is self adaptive
with the step-size allowed to increase from iteration to iteration
unlike the monotone decreasing sequence step-size in [31]. Thus,
the dependence of the bifunction g on the Lipschitz constants is
dispensed with.
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Main result

The set K is a subset of Tn. This claim is easily obtained by the
Proposition 3, the Normal cone and subdifferential definition.

Lemma

The sequence {xn} defined recursively by Algorithm 6 satisfies the
inequality

d2(zn, p) ≤ d2(wn, p)−
(

1− µλn
λn+1

)
[d2(wn, yn) + d2(yn, zn)].

S. Reich and O.K. Oyewole Equilibrium problem
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Main result

In the next result, we show that the sequence {xn} generated by
Algorithm 6 has a weak limit.

Lemma

Let f : K → K be a κ-contraction mapping. The sequence {xn}
generated by Algorithm 6 is bounded.

We present our main theorem result in the next slide with some
highlight of the proof given.
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Main theorem

Theorem

Suppose condition (A1)-(A4) and let f : K → K be a
κ-contraction, then the sequence {xn} generated by Algorithm 6
converges strongly to a point p = PSol(g ,K)f (p) ∈ Sol(g ,K ),
where PSol(g ,K) is the projection of K onto Sol(g ,K ).
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Application to variational inequalities

Suppose

g(x , y) =

{
〈Gx , exp−1x y〉, if x , y ∈ K ,

+∞, otherwise,

where G : K → M is a mapping, then the equilibrium problem (1)
reduces to the variational inequality (VIP):

Find x ∈ K such that 〈Gx , exp−1x y〉 ≥ 0, ∀ y ∈ K . (6)

We denote the set of solution of VIP (6) by VIP(G ,K ).

S. Reich and O.K. Oyewole Equilibrium problem
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Application to VIP

The mappingG : K → M is said to be pseudomonotone if

〈Gx , y − x〉 ≥ 0⇒ 〈Gy , y − x〉 ≥ 0, x , y ∈ K .

Assume that the function G satisfies the following conditions:

(V1) The function G is pseudomonotone on K with VIP(G ,K ) 6= ∅.
(V2) G is L-Lipschitz continous, that is

‖Py ,xGx − Gy‖ ≤ ‖x − y‖, x , y ∈ K ,

where Py ,x is a parallel transport (see [21]).

(V3) lim sup
n→∞

〈Gxn, exp−1xn y〉 ≤ 〈Gp, exp−1p y〉 for every y ∈ K and

{xn} ⊂ K such that xn ⇀ p.
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Application formulation

By replacing the proximal term arg min
y∈M

{
g(x , y) + 1

2λn
d2(x , y)

}
with PK (expx(−λnG (x))), where PK is a projection of M onto K
in Algorithm 6, we obtain a method for approximating a point in
VIP(G ,K ). Under this settings we have the following strong
convergence theorem for approximating a solution of the VIP (6).

Theorem

Let f : K → K be a κ-contraction and G : K → M be a
pseudomonotone operator satisfying conditions V 1-V 3, then the
sequence {xn} generated by Algorithm 6 converges strongly to an
element p = PVIP(G ,K)f (p).

S. Reich and O.K. Oyewole Equilibrium problem
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Application to Convex minimization problem

{
min
x∈K

φ(x) (7)

where φ is a proper lower semicontinuous convex function of M
onto (−∞,+∞] such that M is contained in the domain of φ.
That is K ⊂ domφ = {x ∈ M : φ(x) < +∞}. The set of solution
of COP (7) is denoted by COP(φ,K ). Suppose we define the
bifunction g : K × K → R by g(x , y) = φ(y)− φ(x), then g(x , y)
satisfies the condition (A1)-(A4) and COP(φ,K ) = Sol(g ,K ). Let
Proxλφ be the proximal operator of the function φ of parameter
λ > 0 and ∇φ is the gradient of φ. Using the term
Proxλφ(expx(−λ∇φ(x))) in place of

arg min
y∈M

{
g(x , y) + 1

2λn
d2(x , y)

}
in Algorithm 6, we obtain a

method for minimizing the function φ.
S. Reich and O.K. Oyewole Equilibrium problem
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Numerical example

We consider an extension of the Nash equilibrium model
introduced in [16, 21]. In this problem, the bifunction
g : K × K → R is given by

g(x , y) = 〈Px + Qy + p, y − x〉.

Let M be give by Space 2 and K ⊂ M be given by

K = {x = (x1, x2, · · · , xm) : 1 ≤ xi ≤ 100, i = 1, 2, · · · ,m},

x , y ∈ K , p = (p1, p2, · · · , pm)T ∈ Rm is chosen randomly with
elements in [1,m]. The matrices P and Q are two square matrices
of order m such that Q is symmetric positive semidefinite and
Q − P is negative semidefinite. It is known (see [21]) that g is
pseudomonotone, satisfies (A2) with Lipschitz constant
c1 = c2 = 1

2‖Q − P‖ (see [39, Lemma 6.2]).
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Numerical example cont’d

Table: Computation result for Example ??.

Algorithm 6 [17, Algorithm 1]

m=20 No of Iter. 23 39
CPU time (sec) 0.0013 2.9229

m=30 No of Iter. 23 43
CPU time (sec) 0.0130 3.6771

m=50 No of Iter. 41 53
CPU time (sec) 0.0050 5.8712

m=60 No of Iter. 35 40
CPU time (sec) 0.0050 5.8712
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Advantage of result

The following are some remarks about the current result compared
to the existing methods and results in the literature.

(i) The method in this paper uses an adaptive step-size which is
allowed to increase from iteration to iteration as against the
method in [17] which is monotonically decreasing and the
method of [1, 30, 31] which relies on the Lipschitz condition
of the bifunction. It is known that the Lipschitz constants can
be difficult to estimate which thus affects the efficiency of the
method.

(ii) The use of the inertial technique makes the convergence of
our faster than the method used in [1, 17].
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Motivation

(iii) With the viscosity method, we obtained a strong convergence
theorem which makes our result desirable over the results of
Ali-Akbari and Fan et al. [1, 18]. We note that the control
parameter of the viscosity step of the method is only required
to be non-summable unlike the parameters in [15, 2] which
requires an extra condition that the difference between
successive parameters be summable. Finally,

(iv) Our result is obtained in the framework of Hadamard manifold
unlike the results of [28], [31] and [39] which were obtained in
the real Hilbert spaces.
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Conclusion

Thanks for your time.
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C. Li, G. López and V. Mart́ın-Márquez, Monotone vector
fields and the proximal point algorithm on Hadamard
manifolds, J. Lond. Math. Soc., 79 (3) (2009), 663–683.
https://doi.org/10.1112/jlms/jdn087.

C. Li, and J.C. Yao, Variational inequalities for set-valued
vector fields on Riemannian manifolds: convexity of the

S. Reich and O.K. Oyewole Equilibrium problem



Introduction
Preliminaries
Main result
Applications

Numerical example
conclusion

solution set and the proximal point algorithm, SIAM J. Control
Optim., 50(4) (2012), 2486–2514.

G. Mastroeni, On auxiliary principle for equilibrium problems.
In: Equilibrium Problems and Variational Models, Erice, 2000.
Nonconvex Optim. Appl., Kluwer Academic, Norwell, 68
(2003), 289–298.

A. Moudafi, Viscosity approximation methods for fixed-points
problems, J. Math. Anal. Appl., 241 (2000), 46–55.

L.D. Muu, W. Oettli, Convergence of an adaptive penalty
scheme for finding constrained equilibria, Nonlinear Anal., 18
(1992), 1159–1166.

T.T.V. Nguyen, J.J. Strodiot and V.H. Nguyen, Hybrid
methods for solving simultaneously an equilibrium problem and

S. Reich and O.K. Oyewole Equilibrium problem



Introduction
Preliminaries
Main result
Applications

Numerical example
conclusion

countably many fixed point problems in a Hilbert space, J.
Optim. Theory Appl., 160(3) (2014), 809–831.

B.T. Polyak, Some methods of speeding up the convergence
of iterarive methods Zh. Vychisl. Mat. Mat. Fiz., 4 (1964),
1–17.

H. Rehman, P. Kumam, A. Gibali and W. Kumam,
Convergence analysis of a general inertial projection-type
method for solving pseudomonotone equilibrium problems with
applications, J. Ineq. Appl., 63, (2021),
https://doi.org/10.1186/s13660-021-02591-1

H. Rehman, P. Kumam and K. Sitthithakerngkiet,
Viscosity-type method for solving pseudomonotone equilibrium
problems in a real Hilbert space with applications, AIMS
Mathematics., 6 (2) (2021), 1538-1560.

S. Reich and O.K. Oyewole Equilibrium problem



Introduction
Preliminaries
Main result
Applications

Numerical example
conclusion

S. Saejung and P. Yotkaew, Approximation of zeros of inverse
strongly monotone operator in Banach spaces, Nonlinear
Anal., 75 (2012), 742–750.

T. Sakai, Riemannian geometry. Vol. 149, Translations of
mathematical monographs, Providence (RI): American
Mathematical Society; 1996. Translated from the 1992
Japanese original by the author.

S. Salahuddin The existence of solution for equilibrium
problems in Hadamard manifolds. Trans. A. Razmadze Math.
Inst., 171 (3) (2017), 381–388.

Y. Shehu, Q.-L. Dong and D. Jiang, Single projection method
for pseudo-monotone variational inequality in Hilbert Spaces,
Optimization., In press. DOI:10.1080/02331934.2018. 1522636

S. Reich and O.K. Oyewole Equilibrium problem



Introduction
Preliminaries
Main result
Applications

Numerical example
conclusion

G. Stampacchia, Formes bilineaires coercivites sur les
ensembles convexes. C. R. Acad. Paris. 258 (1964),
4413–4416.

W. Takahashi, Introduction to Nonlinear and Convex
Analysis. Yokohama Publishers, Yokohama (2009).

G.J. Tang, L.W. Zhou and N.J. Huang, Existence results for
a class of hemivariational inequality problems on Hadamard
manifolds. Optimization 65(7) (2016), 1451–1461.

D.Q. Tran, M.L. Dung, and V.H. Nguyen, Extragradient
algorithms extended to equilibrium problems. Optimization.,
57 (6) (2008), 749–776.

S. Reich and O.K. Oyewole Equilibrium problem



Introduction
Preliminaries
Main result
Applications

Numerical example
conclusion
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