Polynomial Estimates for the Method of Cyclic Projections in Hilbert Spaces

Rafał Zalas

Technion - Israel institute of Technology rafalz@technion.ac.il

Joint work with Simeon Reich

A workshop on Nonlinear Functional Analysis and Its Applications in memory of Professor Ronald E. Bruck

Haifa, April 04 - 06, 2022.

 \mathcal{H} – real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$.

 M_i – closed and linear subspaces of \mathcal{H} , $i = 1, \ldots, m$.

 $M := \bigcap_{i=1}^m M_i$.

 P_{M_i} , P_M – orthogonal projections onto M_i and M, respectively.

The Method of Cyclic Projections

$$y_0 \in \mathcal{H}, \qquad y_k := (P_{M_m} \dots P_{M_1})^k (y_0), \qquad k = 1, 2, \dots$$

Rate of convergence for

$$\underbrace{ \|y_k - P_M(y_0)\|, \qquad \sqrt{\frac{1}{m} \sum_{i=1}^m d^2(y_k, M_i), \qquad \|y_k - y_{k-1}\|}_{\to 0}.$$

[J. von Neumann (1933), I. Halperin (1962).]

Assumption

$$\sum_{i=1}^m M_i^\perp \text{ is not closed.}$$

Outline

Known Results

- What happens when $\sum_{i=1}^{m} M_i^{\perp}$ is closed?
- What happens when $\sum_{i=1}^{m} M_i^{\perp}$ is not closed?

New Results

- A view on the MCP from the product space $\bigoplus_{i=1}^{m} \mathcal{H}$.
- Best possible estimates when $\sum_{i=1}^{m} M_i^{\perp}$ is not closed.

What happens when $\sum_{i=1}^{m} M_i^{\perp}$ is closed?

$$\sum_{i=1}^{m} M_{i}^{\perp} = \sum_{i=1}^{m} M_{i}^{\perp} = M^{\perp}$$

Linear Convergence

Theorem 1.
$$\sum_{i=1}^{m} M_i^{\perp}$$
 is closed $\iff \underbrace{\|P_{M_m} \dots P_{M_1} - P_M\|}_{q} < 1.$

[H.H. Bauschke, J.M. Borwein and A.S. Lewis (1997), F. Deutsch (1984).]

$$||y_k - P_M(y_0)|| = O(q^k),$$

$$\sqrt{\frac{1}{m}\sum_{i=1}^{m}d^{2}(y_{k},M_{i})} \stackrel{(*)}{=} O(q^{k}),$$
$$\|y_{k}-y_{k-1}\| \stackrel{(*)}{=} O(q^{k}).$$

$$\max\left\{\sqrt{\frac{1}{m}\sum_{i=1}^{m}d^{2}(y_{k},M_{i})}, \|y_{k}-y_{k-1}\|\right\} \leq 2\|y_{k-1}-P_{M}(y_{0})\| (*)$$

What happens when $\sum_{i=1}^{m} M_i^{\perp}$ is not closed?

$$\sum_{i=1}^m M_i^\perp \neq \sum_{i=1}^m M_i^\perp = M^\perp$$

Arbitrarily Slow Convergence

Theorem 2. Assume that $\sum_{i=1}^{m} M_i^{\perp}$ is not closed. Then, for each sequence $(a_k)_{k=0}^{\infty} \subset (0, \infty)$ with $a_k \to 0$, there is $y_0 \in \mathcal{H}$ such that

 $\|y_k - P_M(y_0)\| \ge a_k$

for all k = 1, 2, ...

[H.H. Bauschke, F. Deutsch and H. Hundal (2009), (2010).]

• There is no such p > 0 that

$$||y_k - P_M(y_0)|| = o(k^{-p})$$

holds for all $y_0 \in \mathcal{H}$.

• What about y_0 's restricted to a subspace $X \subset \mathcal{H}$?

Super Polynomially Fast Convergence

Theorem 3. Assume that $\sum_{i=1}^{m} M_i^{\perp}$ is not closed. Then there is a dense linear subspace X of \mathcal{H} such that for all $y_0 \in X$ and for all p > 0, we have

$$|y_k - P_M(y_0)|| = o(k^{-p}).$$

[C. Badea and D. Seifert (2016).]

Consequently, for all $y_0 \in X$ and for all p > 0, we have

$$\sqrt{\frac{1}{m}\sum_{i=1}^{m}d^2(y_k,M_i)}\stackrel{(*)}{=}o(k^{-p})$$

and

$$||y_k - y_{k-1}|| \stackrel{(*)}{=} o(k^{-p}).$$

$$\max\left\{\sqrt{\frac{1}{m}\sum_{i=1}^{m}d^{2}(y_{k},M_{i})}, \quad \|y_{k}-y_{k-1}\|\right\} \leq 2\|y_{k-1}-P_{M}(y_{0})\| \qquad (*)$$

Polynomial Convergence

Theorem 4. For each $y_0 \in \sum_{i=1}^m M_i^{\perp}$ (so that $P_M(y_0) = 0$), we have

$$||y_k|| = O(k^{-1/(4m\sqrt{m}-2)}).$$

Moreover, when m = 2, then

$$||y_k|| = O(k^{-1/2})$$

and $k^{-1/2}$ cannot be replaced by $k^{-1/2-\varepsilon}$ for any $\varepsilon > 0$.

[P. Borodin and E. Kopecká (2020).]

Open Problem

- Can we show that $||y_k|| = O(k^{-1/2})$ holds for $m \ge 3$?
- Find the best power in $||y_k|| = O(k^{-p})$ for $m \ge 3$?

Polynomial Convergence

Theorem 4. For each $y_0 \in \sum_{i=1}^m M_i^{\perp}$ (so that $P_M(y_0) = 0$), we have $\|y_k\| = \mathcal{O}(k^{-1/(4m\sqrt{m}-2)}).$

Moreover, when m = 2, then

$$||y_k|| = \mathcal{O}(k^{-1/2})$$

and $k^{-1/2}$ cannot be replaced by $k^{-1/2-\varepsilon}$ for any $\varepsilon > 0$.

[P. Borodin and E. Kopecká (2020).]

Example of M_1 and M_2 leading to optimality

• For each $\varepsilon > 0$ define $y_0 \in M_1^\perp + M_2^\perp$ such that

$$\|y_k\| \geq \frac{C(y_0)}{k^{1/2+\varepsilon}} \qquad k=1,2,\ldots.$$

• $M_1^{\perp} + M_2^{\perp}$ is not closed.

Polynomial Convergence

Theorem 4. For each $y_0 \in \sum_{i=1}^m M_i^{\perp}$ (so that $P_M(y_0) = 0$), we have $\|y_k\| = \mathcal{O}(k^{-1/(4m\sqrt{m}-2)}).$

Moreover, when m = 2, then

$$||y_k|| = \mathcal{O}(k^{-1/2})$$

and $k^{-1/2}$ cannot be replaced by $k^{-1/2-\varepsilon}$ for any $\varepsilon > 0$.

[P. Borodin and E. Kopecká (2020).]

The Lower Bound Conjecture

• If $\sum_{i=1}^{m} M_i^{\perp}$ is not closed, then for each $\varepsilon > 0$ there is $y_0 \in \sum_{i=1}^{m} M_i^{\perp}$ such that

$$\|y_k\| \geq \frac{C(y_0)}{k^{1/2+\varepsilon}} \qquad k=1,2,\ldots.$$

Asymptotic Regularity

Theorem 5. For each $y_0 \in \mathcal{H}$, we have

$$||y_k - y_{k-1}|| = o(k^{-1}).$$

[C. Badea and D. Seifert (2016), M. Crouzeix (2008).]

• The product of projections $T := P_{M_m} \dots P_{M_1}$ satisfies

$$||T^{k} - T^{k-1}|| = \mathcal{O}(k^{-1}).$$

- Can we replace k^{-1} by $k^{-1-\varepsilon}$ for any $\varepsilon > 0$?
- What is the rate if we restrict y_0 's only to $\sum_{i=1}^m M_i^{\perp}$?

New Results

A view on the MCP from the product space

Product Space Setup

$$H := \bigoplus_{i=1}^{m} \mathcal{H}, \quad \langle \mathbf{x}, \mathbf{y} \rangle := \sum_{i=1}^{m} \frac{1}{m} \langle x_i, y_i \rangle, \quad \|\mathbf{x}\| = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \|x_i\|^2}$$
$$C := M_1 \times \ldots \times M_m \quad \text{and} \quad D := \{\underbrace{(x, \ldots, x)}_{m \text{ times}} : x \in \mathcal{H}\}$$

Theorem 6. For $\mathbf{x} = (x_1, \dots, x_m) \in \mathbf{H}$, we have $P_{\mathbf{C}}(\mathbf{x}) = (P_{M_1}(x_1), \dots, P_{M_m}(x_m))$

and

$$P_D(\mathbf{x}) = (s, \dots, s), \text{ where } s := \frac{1}{m} \sum_{i=1}^m x_i.$$

[G. Pierra (1984).]

$$P_{\mathcal{C}^{\perp}}(\mathbf{x}) = \left(P_{M_{1}^{\perp}}(x_{1}), \dots, P_{M_{m}^{\perp}}(x_{m})\right), \quad \text{where} \quad \mathcal{C}^{\perp} = M_{1}^{\perp} \times \dots \times M_{m}^{\perp}$$
$$P_{M_{i}}(\mathbf{x}) = \left(P_{M_{i}}(x_{1}), \dots, P_{M_{i}}(x_{m})\right), \quad \text{where} \quad M_{i} := M_{i} \times \dots \times M_{i}$$

The MCP Seen from the Product Space

$$\boldsymbol{T} := P_{\boldsymbol{M}_m} \dots P_{\boldsymbol{M}_1} \in B(\boldsymbol{H})$$

• For
$$y_0 \in \mathcal{H}$$
 and $\boldsymbol{x} := (y_0, \ldots, y_0)$, we get

$$\|y_k - y_{k-1}\| = \|(\mathbf{T}^k - \mathbf{T}^{k-1})P_D(\mathbf{x})\|$$
$$\sqrt{\frac{1}{m}\sum_{i=1}^m d^2(y_k, M_i)} = \|P_{\mathbf{C}^{\perp}}\mathbf{T}^k P_D(\mathbf{x})\|$$

• For
$$y_0 = \frac{1}{m} \sum_{i=1}^m x_i$$
 with $x_i \in M_i^{\perp}$ and $\mathbf{x} := (x_1, \ldots, x_m)$, we get

$$\|y_{k}\| = \|T^{k}P_{D}P_{C^{\perp}}(x)\|$$
$$\|y_{k} - y_{k-1}\| = \|(T^{k} - T^{k-1})P_{D}P_{C^{\perp}}(x)\|$$
$$\sqrt{\frac{1}{m}\sum_{i=1}^{m}d^{2}(y_{k}, M_{i})} = \|P_{C^{\perp}}T^{k}P_{D}P_{C^{\perp}}(x)\|$$

Polynomial Estimates

Lemma 7. We have:

(i)
$$\|(\mathbf{T}^{k} - \mathbf{T}^{k-1})P_{D}\| = \mathcal{O}(k^{-1});$$

(ii) $\|P_{C^{\perp}}\mathbf{T}^{k}P_{D}\| = \mathcal{O}(k^{-1/2});$
(iii) $\|\mathbf{T}^{k}P_{D}P_{C^{\perp}}\| = \mathcal{O}(k^{-1/2});$
(iv) $\|(\mathbf{T}^{k} - \mathbf{T}^{k-1})P_{D}P_{C^{\perp}}\| = \mathcal{O}(k^{-3/2});$
(v) $\|P_{C^{\perp}}\mathbf{T}^{k}P_{D}P_{C^{\perp}}\| = \mathcal{O}(k^{-1}).$

Proof.

(ii) Follows from

$$\|P_{\boldsymbol{C}^{\perp}}\boldsymbol{T}^{k}P_{\boldsymbol{D}}\| \leq \sqrt{\frac{m}{2}\|(\boldsymbol{T}^{k}-\boldsymbol{T}^{k-1})P_{\boldsymbol{D}}\|} = O(k^{-1/2}).$$

. . .

(iii) Because T and T^* commute with P_D , we have

$$\|\boldsymbol{T}^{k} P_{\boldsymbol{D}} P_{\boldsymbol{C}^{\perp}}\| = \|(\boldsymbol{T}^{k} P_{\boldsymbol{D}} P_{\boldsymbol{C}^{\perp}})^{*}\| = \|P_{\boldsymbol{C}^{\perp}}(\boldsymbol{T}^{*})^{k} P_{\boldsymbol{D}}\| \stackrel{(ii) \text{ for } \boldsymbol{T}^{*}}{=} O(k^{-1/2}).$$

. . .

Thresholds are Critical

Lemma 8. Assume that one of the following conditions holds for some $\varepsilon > 0$:

(i)
$$\|(\mathbf{T}^{k} - \mathbf{T}^{k-1})P_{D}\| = \mathcal{O}(k^{-1-\varepsilon});$$

(ii) $\|P_{C^{\perp}}\mathbf{T}^{k}P_{D}\| = \mathcal{O}(k^{-1/2-\varepsilon});$
(iii) $\|\mathbf{T}^{k}P_{D}P_{C^{\perp}}\| = \mathcal{O}(k^{-1/2-\varepsilon});$
(iv) $\|(\mathbf{T}^{k} - \mathbf{T}^{k-1})P_{D}P_{C^{\perp}}\| = \mathcal{O}(k^{-3/2-\varepsilon});$
(v) $\|P_{C^{\perp}}\mathbf{T}^{k}P_{D}P_{C^{\perp}}\| = \mathcal{O}(k^{-1-\varepsilon});$

Then $\sum_{i=1}^{m} M_i^{\perp}$ is closed and all of the rates become $O(q^k)$ for some $q \in (0, 1)$.

$$\underbrace{\mathsf{Lemma 7} + \mathsf{Lemma 8}}_{\mathsf{in } \boldsymbol{H}} \implies \mathsf{Best Possible Estimates in } \mathcal{H}$$

Main Result

Theorem 9. Assume that $\sum_{i=1}^{m} M_i^{\perp}$ is not closed. Then, for each $y_0 \in \mathcal{H}$, we have

$$\|y_k - y_{k-1}\| = o(k^{-1}) \tag{1}$$

and

$$\sqrt{\frac{1}{m}\sum_{i=1}^{m}d^{2}(y_{k},M_{i})}=o(k^{-1/2}).$$
(2)

Moreover, for each $y_0 \in \sum_{i=1}^m M_i^{\perp}$ (so that $P_M(y_0) = 0$), we have

$$||y_k|| = \mathcal{O}(k^{-1/2}),$$
 (3)

$$\|y_k - y_{k-1}\| = \mathcal{O}(k^{-3/2})$$
(4)

and

$$\sqrt{\frac{1}{m}\sum_{i=1}^{m}d^{2}(y_{k},M_{i})}=\mathcal{O}(k^{-1}).$$
(5)

Furthermore, all of the above-mentioned rates are best possible as the corresponding polynomials $k^{1/2}$, k^1 and $k^{3/2}$ cannot be replaced by $k^{1/2+\varepsilon}$, $k^{1+\varepsilon}$ and $k^{3/2+\varepsilon}$, respectively, for any $\varepsilon > 0$.

Lower Bound Property

Corollary 10. Assume that $\sum_{i=1}^{m} M_i^{\perp}$ is not closed. Then for each $\varepsilon > 0$ and for each C > 0 there is $y_0 \in \sum_{i=1}^{m} M_i^{\perp}$ and a countably infinite subset of indices $K \subset \mathbb{N}$ such that the lower bound

$$\|y_k\| \geq Ck^{-1/2-\varepsilon}$$

holds for all $k \in K$.

• Can we show that the lower bound property holds for all sufficiently large *k*?

References

Linear convergence

 H.H. Bauschke, J.M. Borwein, A.S. Lewis, Contemp. Math. 204 (1997), 1–38.

Arbitrarily slow convergence

- [2] H. H. Bauschke, F. Deutsch, H. Hundal, Int. Trans. Oper. Res. 16 (2009), 413–425.
- [3] F. Deutsch, H. Hundal, J. Approx. Theory 162 (2010), 1717–1738.

Super-polynomially fast convergence

[4] C. Badea, D. Seifert, J. Approx. Theory 205, (2016), 133-148.

Polynomial convergence

[5] P. A. Borodin, E. Kopecká, J. Approx. Theory 260 (2020), 105486.

Thank you for your attention!