Polynomial Estimates for the Method of Cyclic Projections in Hilbert Spaces

Rafat Zalas

Technion - Israel institute of Technology
rafalz@technion.ac.il

Joint work with Simeon Reich

A workshop on Nonlinear Functional Analysis and Its Applications in memory of Professor Ronald E. Bruck

Haifa, April 04-06, 2022.
\mathcal{H} - real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$.
M_{i} - closed and linear subspaces of $\mathcal{H}, i=1, \ldots, m$.
$M:=\bigcap_{i=1}^{m} M_{i}$.
$P_{M_{i}}, P_{M}$ - orthogonal projections onto M_{i} and M, respectively.

The Method of Cyclic Projections

$$
y_{0} \in \mathcal{H}, \quad y_{k}:=\left(P_{M_{m}} \ldots P_{M_{1}}\right)^{k}\left(y_{0}\right), \quad k=1,2, \ldots
$$

Rate of convergence for

$$
\underbrace{\left\|y_{k}-P_{M}\left(y_{0}\right)\right\|, \quad \sqrt{\frac{1}{m} \sum_{i=1}^{m} d^{2}\left(y_{k}, M_{i}\right)}, \quad\left\|y_{k}-y_{k-1}\right\|}_{\text {[J. von Neumann (1933), I. Halperin (1962).] }} .
$$

Assumption

$$
\sum_{i=1}^{m} M_{i}^{\perp} \text { is not closed. }
$$

Outline

Known Results

- What happens when $\sum_{i=1}^{m} M_{i}^{\perp}$ is closed?
- What happens when $\sum_{i=1}^{m} M_{i}^{\perp}$ is not closed?

New Results

- A view on the MCP from the product space $\bigoplus_{i=1}^{m} \mathcal{H}$.
- Best possible estimates when $\sum_{i=1}^{m} M_{i}^{\perp}$ is not closed.

What happens when $\sum_{i=1}^{m} M_{i}^{\perp}$ is closed?

$$
\sum_{i=1}^{m} M_{i}^{\perp}=\overline{\sum_{i=1}^{m} M_{i}^{\perp}}=M^{\perp}
$$

Linear Convergence

Theorem 1. $\sum_{i=1}^{m} M_{i}^{\perp}$ is closed $\Longleftrightarrow \underbrace{\left\|P_{M_{m}} \ldots P_{M_{1}}-P_{M}\right\|}_{q}<1$.
[H.H. Bauschke, J.M. Borwein and A.S. Lewis (1997), F. Deutsch (1984).]

$$
\begin{gather*}
\left\|y_{k}-P_{M}\left(y_{0}\right)\right\|=O\left(q^{k}\right), \\
\sqrt{\frac{1}{m} \sum_{i=1}^{m} d^{2}\left(y_{k}, M_{i}\right)}\left(\stackrel{(\underset{y}{*}}{=} O\left(q^{k}\right),\right. \\
\left\|y_{k}-y_{k-1}\right\| \stackrel{(\pm)}{=} O\left(q^{k}\right), \\
\max \left\{\sqrt{\frac{1}{m} \sum_{i=1}^{m} d^{2}\left(y_{k}, M_{i}\right)}, \quad\left\|y_{k}-y_{k-1}\right\|\right\} \leq 2\left\|y_{k-1}-P_{M}\left(y_{0}\right)\right\| \tag{*}
\end{gather*}
$$

What happens when $\sum_{i=1}^{m} M_{i}^{\perp}$ is not closed?

$$
\sum_{i=1}^{m} M_{i}^{\perp} \neq \overline{\sum_{i=1}^{m} M_{i}^{\perp}}=M^{\perp}
$$

Arbitrarily Slow Convergence

Theorem 2. Assume that $\sum_{i=1}^{m} M_{i}^{\perp}$ is not closed. Then, for each sequence $\left(a_{k}\right)_{k=0}^{\infty} \subset(0, \infty)$ with $a_{k} \rightarrow 0$, there is $y_{0} \in \mathcal{H}$ such that

$$
\left\|y_{k}-P_{M}\left(y_{0}\right)\right\| \geq a_{k}
$$

for all $k=1,2, \ldots$.
[H.H. Bauschke, F. Deutsch and H. Hundal (2009), (2010).]

- There is no such $p>0$ that

$$
\left\|y_{k}-P_{M}\left(y_{0}\right)\right\|=o\left(k^{-p}\right)
$$

holds for all $y_{0} \in \mathcal{H}$.

- What about yo's restricted to a subspace $X \subset \mathcal{H}$?

Super Polynomially Fast Convergence

Theorem 3. Assume that $\sum_{i=1}^{m} M_{i}^{\perp}$ is not closed. Then there is a dense linear subspace X of \mathcal{H} such that for all $y_{0} \in X$ and for all $p>0$, we have

$$
\left\|y_{k}-P_{M}\left(y_{0}\right)\right\|=o\left(k^{-p}\right)
$$

[C. Badea and D. Seifert (2016).]

Consequently, for all $y_{0} \in X$ and for all $p>0$, we have

$$
\sqrt{\frac{1}{m} \sum_{i=1}^{m} d^{2}\left(y_{k}, M_{i}\right)} \stackrel{(*)}{=} o\left(k^{-p}\right)
$$

and

$$
\begin{gather*}
\left\|y_{k}-y_{k-1}\right\| \stackrel{(*)}{=} o\left(k^{-p}\right) \\
\max \left\{\sqrt{\frac{1}{m} \sum_{i=1}^{m} d^{2}\left(y_{k}, M_{i}\right)}, \quad\left\|y_{k}-y_{k-1}\right\|\right\} \leq 2\left\|y_{k-1}-P_{M}\left(y_{0}\right)\right\| \tag{*}
\end{gather*}
$$

Polynomial Convergence

Theorem 4. For each $y_{0} \in \sum_{i=1}^{m} M_{i}^{\perp}$ (so that $P_{M}\left(y_{0}\right)=0$), we have

$$
\left\|y_{k}\right\|=\mathcal{O}\left(k^{-1 /(4 m \sqrt{m}-2)}\right)
$$

Moreover, when $m=2$, then

$$
\left\|y_{k}\right\|=\mathcal{O}\left(k^{-1 / 2}\right)
$$

and $k^{-1 / 2}$ cannot be replaced by $k^{-1 / 2-\varepsilon}$ for any $\varepsilon>0$.
[P. Borodin and E. Kopecká (2020).]

Open Problem

- Can we show that $\left\|y_{k}\right\|=O\left(k^{-1 / 2}\right)$ holds for $m \geq 3$?
- Find the best power in $\left\|y_{k}\right\|=O\left(k^{-p}\right)$ for $m \geq 3$?

Polynomial Convergence

Theorem 4. For each $y_{0} \in \sum_{i=1}^{m} M_{i}^{\perp}$ (so that $P_{M}\left(y_{0}\right)=0$), we have

$$
\left\|y_{k}\right\|=\mathcal{O}\left(k^{-1 /(4 m \sqrt{m}-2)}\right)
$$

Moreover, when $m=2$, then

$$
\left\|y_{k}\right\|=\mathcal{O}\left(k^{-1 / 2}\right)
$$

and $k^{-1 / 2}$ cannot be replaced by $k^{-1 / 2-\varepsilon}$ for any $\varepsilon>0$.
[P. Borodin and E. Kopecká (2020).]
Example of M_{1} and M_{2} leading to optimality

- For each $\varepsilon>0$ define $y_{0} \in M_{1}^{\perp}+M_{2}^{\perp}$ such that

$$
\left\|y_{k}\right\| \geq \frac{C\left(y_{0}\right)}{k^{1 / 2+\varepsilon}} \quad k=1,2, \ldots
$$

- $M_{1}^{\perp}+M_{2}^{\perp}$ is not closed.

Polynomial Convergence

Theorem 4. For each $y_{0} \in \sum_{i=1}^{m} M_{i}^{\perp}$ (so that $P_{M}\left(y_{0}\right)=0$), we have

$$
\left\|y_{k}\right\|=\mathcal{O}\left(k^{-1 /(4 m \sqrt{m}-2)}\right)
$$

Moreover, when $m=2$, then

$$
\left\|y_{k}\right\|=\mathcal{O}\left(k^{-1 / 2}\right)
$$

and $k^{-1 / 2}$ cannot be replaced by $k^{-1 / 2-\varepsilon}$ for any $\varepsilon>0$.
[P. Borodin and E. Kopecká (2020).]

The Lower Bound Conjecture

- If $\sum_{i=1}^{m} M_{i}^{\perp}$ is not closed, then for each $\varepsilon>0$ there is $y_{0} \in \sum_{i=1}^{m} M_{i}^{\perp}$ such that

$$
\left\|y_{k}\right\| \geq \frac{C\left(y_{0}\right)}{k^{1 / 2+\varepsilon}} \quad k=1,2, \ldots
$$

Asymptotic Regularity

Theorem 5. For each $y_{0} \in \mathcal{H}$, we have

$$
\left\|y_{k}-y_{k-1}\right\|=o\left(k^{-1}\right)
$$

[C. Badea and D. Seifert (2016), M. Crouzeix (2008).]

- The product of projections $T:=P_{M_{m}} \ldots P_{M_{1}}$ satisfies

$$
\left\|T^{k}-T^{k-1}\right\|=\mathcal{O}\left(k^{-1}\right)
$$

- Can we replace k^{-1} by $k^{-1-\varepsilon}$ for any $\varepsilon>0$?
- What is the rate if we restrict y_{0} 's only to $\sum_{i=1}^{m} M_{i}^{\perp}$?

New Results

A view on the MCP from the product space

Product Space Setup

$$
\begin{aligned}
& \boldsymbol{H}:=\bigoplus_{i=1}^{m} \mathcal{H}, \quad\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=\sum_{i=1}^{m} \frac{1}{m}\left\langle x_{i}, y_{i}\right\rangle, \quad\|\boldsymbol{x}\|=\sqrt{\frac{1}{m} \sum_{i=1}^{m}\left\|x_{i}\right\|^{2}} \\
& \boldsymbol{C}:=M_{1} \times \ldots \times M_{m} \quad \text { and } \quad \boldsymbol{D}:=\{\underbrace{(x, \ldots, x)}_{m \text { times }}: x \in \mathcal{H}\}
\end{aligned}
$$

Theorem 6. For $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \in \boldsymbol{H}$, we have

$$
P_{C}(x)=\left(P_{M_{1}}\left(x_{1}\right), \ldots, P_{M_{m}}\left(x_{m}\right)\right)
$$

and

$$
P_{D}(x)=(s, \ldots, s), \quad \text { where } \quad s:=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

[G. Pierra (1984).]

$$
\begin{gathered}
P_{C^{\perp}}(x)=\left(P_{M_{1}^{\perp}}\left(x_{1}\right), \ldots, P_{M_{m}^{\perp}}\left(x_{m}\right)\right), \quad \text { where } \quad C^{\perp}=M_{1}^{\perp} \times \ldots \times M_{m}^{\perp} \\
P_{M_{i}}(x)=\left(P_{M_{i}}\left(x_{1}\right), \ldots, P_{M_{i}}\left(x_{m}\right)\right), \quad \text { where } \quad M_{i}:=M_{i} \times \ldots \times M_{i}
\end{gathered}
$$

The MCP Seen from the Product Space

$$
\boldsymbol{T}:=P_{\boldsymbol{M}_{m}} \ldots P_{\mathbf{M}_{1}} \in B(\boldsymbol{H})
$$

- For $y_{0} \in \mathcal{H}$ and $\boldsymbol{x}:=\left(y_{0}, \ldots, y_{0}\right)$, we get

$$
\begin{gathered}
\left\|y_{k}-y_{k-1}\right\|=\left\|\left(\boldsymbol{T}^{k}-\boldsymbol{T}^{k-1}\right) P_{D}(x)\right\| \\
\sqrt{\frac{1}{m} \sum_{i=1}^{m} d^{2}\left(y_{k}, M_{i}\right)}=\left\|P_{C^{\perp}} \boldsymbol{T}^{k} P_{D}(x)\right\|
\end{gathered}
$$

- For $y_{0}=\frac{1}{m} \sum_{i=1}^{m} x_{i}$ with $x_{i} \in M_{i}^{\perp}$ and $x:=\left(x_{1}, \ldots, x_{m}\right)$, we get

$$
\begin{gathered}
\left\|y_{k}\right\|=\left\|\boldsymbol{T}^{k} P_{\boldsymbol{D}} P_{C^{\perp}}(\boldsymbol{x})\right\| \\
\left\|y_{k}-y_{k-1}\right\|=\left\|\left(\boldsymbol{T}^{k}-\boldsymbol{T}^{k-1}\right) P_{\boldsymbol{D}} P_{C^{\perp}}(\boldsymbol{x})\right\| \\
\sqrt{\frac{1}{m} \sum_{i=1}^{m} d^{2}\left(y_{k}, M_{i}\right)}=\left\|P_{C^{\perp}} \boldsymbol{T}^{k} P_{\boldsymbol{D}} P_{C^{\perp}}(\boldsymbol{x})\right\|
\end{gathered}
$$

Polynomial Estimates

Lemma 7. We have:
(i) $\left\|\left(\boldsymbol{T}^{k}-\boldsymbol{T}^{k-1}\right) P_{D}\right\|=\mathcal{O}\left(k^{-1}\right)$;
(ii) $\left\|P_{C_{\perp}} T^{k} P_{D}\right\|=\mathcal{O}\left(k^{-1 / 2}\right)$;
(iii) $\left\|\boldsymbol{T}^{k} P_{D} P_{C^{\perp}}\right\|=\mathcal{O}\left(k^{-1 / 2}\right)$;
(iv) $\left\|\left(\boldsymbol{T}^{k}-\boldsymbol{T}^{k-1}\right) P_{D} P_{C^{\perp}}\right\|=\mathcal{O}\left(k^{-3 / 2}\right)$;
(v) $\left\|P_{C^{\perp}} \boldsymbol{T}^{k} P_{D} P_{C^{\perp}}\right\|=\mathcal{O}\left(k^{-1}\right)$.

Proof.
(ii) Follows from

$$
\left\|P_{\boldsymbol{C}_{\perp}} \boldsymbol{T}^{k} P_{\boldsymbol{D}}\right\| \leq \sqrt{\frac{m}{2}\left\|\left(\boldsymbol{T}^{k}-\boldsymbol{T}^{k-1}\right) P_{\boldsymbol{D}}\right\|}=O\left(k^{-1 / 2}\right)
$$

(iii) Because \boldsymbol{T} and \boldsymbol{T}^{*} commute with $P_{\boldsymbol{D}}$, we have

$$
\left\|\boldsymbol{T}^{k} P_{\boldsymbol{D}} P_{\boldsymbol{C}^{\perp}}\right\|=\left\|\left(\boldsymbol{T}^{k} P_{\boldsymbol{D}} P_{\boldsymbol{C}^{\perp}}\right)^{*}\right\|=\left\|P_{\boldsymbol{C}^{\perp}}\left(\boldsymbol{T}^{*}\right)^{k} P_{\boldsymbol{D}}\right\| \stackrel{(i i)}{\stackrel{\text { for }}{=} \boldsymbol{T}^{*}} O\left(k^{-1 / 2}\right)
$$

Thresholds are Critical

Lemma 8. Assume that one of the following conditions holds for some $\varepsilon>0$:
(i) $\left\|\left(\boldsymbol{T}^{k}-\boldsymbol{T}^{k-1}\right) P_{\boldsymbol{D}}\right\|=\mathcal{O}\left(k^{-1-\varepsilon}\right)$;
(ii) $\left\|P_{C^{\perp}} \boldsymbol{T}^{k} P_{D}\right\|=\mathcal{O}\left(k^{-1 / 2-\varepsilon}\right)$;
(iii) $\left\|\boldsymbol{T}^{k} P_{D} P_{C^{\perp}}\right\|=\mathcal{O}\left(k^{-1 / 2-\varepsilon}\right)$;
(iv) $\left\|\left(\boldsymbol{T}^{k}-\boldsymbol{T}^{k-1}\right) P_{D} P_{C^{\perp}}\right\|=\mathcal{O}\left(k^{-3 / 2-\varepsilon}\right)$;
(v) $\left\|P_{C \perp} \boldsymbol{T}^{k} P_{D} P_{C \perp}\right\|=\mathcal{O}\left(k^{-1-\varepsilon}\right)$;

Then $\sum_{i=1}^{m} M_{i}^{\perp}$ is closed and all of the rates become $O\left(q^{k}\right)$ for some $q \in(0,1)$.

Main Result

Theorem 9. Assume that $\sum_{i=1}^{m} M_{i}^{\perp}$ is not closed. Then, for each $y_{0} \in \mathcal{H}$, we have

$$
\begin{equation*}
\left\|y_{k}-y_{k-1}\right\|=o\left(k^{-1}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{\frac{1}{m} \sum_{i=1}^{m} d^{2}\left(y_{k}, M_{i}\right)}=o\left(k^{-1 / 2}\right) \tag{2}
\end{equation*}
$$

Moreover, for each $y_{0} \in \sum_{i=1}^{m} M_{i}^{\perp}$ (so that $P_{M}\left(y_{0}\right)=0$), we have

$$
\begin{gather*}
\left\|y_{k}\right\|=\mathcal{O}\left(k^{-1 / 2}\right) \tag{3}\\
\left\|y_{k}-y_{k-1}\right\|=\mathcal{O}\left(k^{-3 / 2}\right) \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
\sqrt{\frac{1}{m} \sum_{i=1}^{m} d^{2}\left(y_{k}, M_{i}\right)}=\mathcal{O}\left(k^{-1}\right) \tag{5}
\end{equation*}
$$

Furthermore, all of the above-mentioned rates are best possible as the corresponding polynomials $k^{1 / 2}, k^{1}$ and $k^{3 / 2}$ cannot be replaced by $k^{1 / 2+\varepsilon}, k^{1+\varepsilon}$ and $k^{3 / 2+\varepsilon}$, respectively, for any $\varepsilon>0$.

Lower Bound Property

Corollary 10. Assume that $\sum_{i=1}^{m} M_{i}^{\perp}$ is not closed. Then for each $\varepsilon>0$ and for each $C>0$ there is $y_{0} \in \sum_{i=1}^{m} M_{i}^{\perp}$ and a countably infinite subset of indices $K \subset \mathbb{N}$ such that the lower bound

$$
\left\|y_{k}\right\| \geq C k^{-1 / 2-\varepsilon}
$$

holds for all $k \in K$.

- Can we show that the lower bound property holds for all sufficiently large k ?

References

Linear convergence

[1] H.H. Bauschke, J.M. Borwein, A.S. Lewis, Contemp. Math. 204 (1997), 1-38.

Arbitrarily slow convergence

[2] H. H. Bauschke, F. Deutsch, H. Hundal, Int. Trans. Oper. Res. 16 (2009), 413-425.
[3] F. Deutsch, H. Hundal, J. Approx. Theory 162 (2010), 1717-1738.

Super-polynomially fast convergence
[4] C. Badea, D. Seifert, J. Approx. Theory 205, (2016), 133-148.

Polynomial convergence
[5] P. A. Borodin, E. Kopecká, J. Approx. Theory 260 (2020), 105486.

Thank you for your attention!

