Mathematical Perspective of Control Theory- A Glimpse

Renu Chaudhary, Ph.D.

Workshop on Nonlinear Functional Analysis and Its Applications in memory of Professor Ronald E. Bruck

> Department of Mathematics Technion-Israel Institute of Technology Haifa, Israel

April 05, 2022

- Controllability of a linear system in finite dimensional spaces.
- Link controllability issues of linear dynamical system with solvability analysis.
- Controllability of a nonlinear system with complete solvability analysis.
- Switch from finite dimensional control to infinite dimensional control.
- Existence and controllability results for fractional evolution equations via integral contractors

- Controllability is one of the qualitative property of a control system which plays a crucial role in the analysis and design of control systems.
- In controllability of a system, we show the existence of a control function which steers the solution of the system from its initial state to the desired final state, where the initial and final states may vary over the entire space.
- Controllability analysis can be made in many problems like:
 (i) Rocket launching problem: Satellite control and control of aircraft
 (ii) Biological System: Sugar level in blood
 (iii) Defence: Missiles and anti-missiles problems
 (iv) Economy: Regulating inflation rate
 (v) Ecology: Predator-Prey system

Autonomous Linear Control System

$$\frac{dx(t)}{dt} = x'(t) = Ax(t) + Bu(t), \quad t_0 \le t \le T,$$
$$x(t_0) = x_0.$$

where

- A and B are real or complex matrices of $n \times n$ and $n \times m$ respectively.
- For each $t \in [t_0, T]$, x(t) is the state element of the state space \mathbb{R}^n .
- u(t) is the control element of the control space \mathbb{R}^m .

Solution

$$x(t) = \exp(A(t-t_0))x_0 + \int_{t_0}^t \exp(A(t-s))Bu(s)ds, \quad t_0 \le t \le T.$$
 (2)

(1)

Exact Controllability

A control system (1) is said to be exactly controllable in the interval $I = [t_0, T]$ if for every initial state x_0 and desired final state x_f , there exists a control u(t) such that the solution x(t) of the system corresponding to this control u satisfies $x(T) = x_f$.

Approximate Controllability

A control system (1) is said to be approximately controllable in the interval $I = [t_0, T]$ if for every initial state x_0 and desired final state x_f and every given number $\epsilon > 0$, there exists a control *u* such that the solution x(t) of the system corresponding to this control satisfies $|x(T) - x_f| < \epsilon$.

Kalman's condition for controllability

The autonomous linear control system is controllable if and only if

$$\operatorname{rank}[B, AB, A^2B, \cdots, A^{n-1}B] = n.$$

The matrix $[B, AB, A^2B, \cdots A^{n-1}B]$ is called the controllability matrix.

* Kalman, R. E.; Controllability of linear systems, Contrib. Differ. Eqn. 1, 190-213, 1963.

Time varying or Non autonomous Linear control system

$$\frac{dx(t)}{dt} = x'(t) = A(t)x(t) + B(t)u(t), \quad t_0 \le t \le T,$$

$$x(t_0) = x_0.$$
(3)

Solution

$$x(t) = \Phi(t, t_0)x_0 + \int_{t_0}^t \Phi(t, s)B(s)u(s)ds, \quad t_0 \le t \le T.$$
(4)

where $\Phi(t, t_0)$ is the State Transition Matrix.

Controllability of finite dimensional linear control system

The system (3) is said to be controllable over $[t_0; T]$, if for every pair of vectors $x_0, x_F \in \mathbb{R}^n$, there exists a control $u \in L^2[t_0, T, \mathbb{R}^m]$ such that the solution of the system satisfies $x(T) = x_F$, that is

$$x(T) = \Phi(T, t_0)x_0 + \int_{t_0}^T \Phi(T, s)Bu(s)ds.$$

Equivalently, find *u* such that

$$y_T = x(T) - \Phi(T, t_0) x_0 = \int_{t_0}^T \Phi(T, s) Bu(s) ds.$$
 (5)

Solvability Problem

Define $L: U = L^2[t_0, T, \mathbb{R}^m] \to \mathbb{R}^n$ by

$$Lu = \int_{t_0}^T \Phi(T, s) Bu(s) ds.$$
(6)

The controllability problem (5) reduces to the surjectivity of the operator $L: U \to \mathbb{R}^n$ That is, given $y_T \in \mathbb{R}^n$, find $u \in U$ such that

$$Lu = y_T. (7)$$

Equivalent Formulation

The Adjoint $L^* : \mathbb{R}^n \to U$ is defined as follows

$$[L^*z](t) = B^{\mathrm{T}}\phi(T,t)^{\mathrm{T}}z.$$
(8)

Instead of solving (7), we solve

$$LL^*z = y_T.$$
 (9)

For $z \in \mathbb{R}^n$, given $y_T \in \mathbb{R}^n$. Which implies $u = L^* z$, then solves (7). The operator $LL^* : \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$LL^*z = \left[\int_{t_0}^T \Phi(T,s)BB^{\mathsf{T}}\Phi^{\mathsf{T}}(T,s)ds\right]z$$
$$= W_{t_0}^T z.$$
(10)

The matrix

$$W_{t_0}^T = \left[\int_{t_0}^T \Phi(T, s) B B^{\mathbf{T}} \Phi^{\mathbf{T}}(T, s) ds\right]$$
(11)

is called Grammian matrix.

Theorem

The linear time varying system is exactly controllable if and only if the $n \times n$ *symmetric controllability matrix*

$$W_{t_0}^T = \int_{t_0}^T \Phi(T, s) B(s) B^T(s) \Phi^T(T, s) ds,$$

is nonsingular. In this case the control

$$u(t) = -B^{T}(t)\Phi^{T}(t_{0}, t)(W_{t_{0}}^{T})^{-1}[x_{0} - \Phi(t_{0}, T)x_{f}],$$
(12)

where $x(T) = x_f$.

* Curtain, R. F., and Zwart, H.; An introduction to infinite-dimensional linear systems theory, vol. 21 of Texts in Applied Mathematics. Springer- Verlag, New York, 1995.

Semilinear Control System

$$\frac{dx(t)}{dt} = x'(t) = Ax(t) + Bu(t) + f(t, x(t)), \quad t_0 \le t \le T,$$

$$x(t_0) = x_0,$$
(13)

where

- $x(t) \in \text{Banach space } \mathbb{X}$.
- $u(t) \in \text{Banach space } \mathbb{U}$.
- $A: D(A) \subseteq \mathbb{X} \to \mathbb{X}$ is closed, linear and densely defined operator.
- $B: L_2[t_0, T: \mathbb{U}] \to L_2[t_0, T: \mathbb{X}]$ is a bounded linear operator, where $L_2[0, T: \mathbb{X}]$ and $L_2[0, T: \mathbb{U}]$ are function spaces.
- $f: [0,T] \times \mathbb{X} \to \mathbb{X}$ is nonlinear function.

For any control $u \in U$, there exists a unique mild solution x(t) of the system (13) (under suitable conditions on f), which is given by the nonlinear integral equation

Mild Solution

$$x(t) = S(t-t_0)x_0 + \int_{t_0}^t S(t-s)[Bu(s) + f(s,x(s))]ds, \quad t_0 \le t \le T.$$

The operator $S(t), t \ge 0$ associated with the mild solution is known as **strongly continuous** semigroup generated by the operator A.

Reachable Set of the Semilinear Control System

 $\mathcal{R}_T(f) = \{x(T) \in \mathbb{X} : x(t) \text{ is a mild solution of the semilinear control} \\ \text{system corresponding to control } u \in L_2[t_0, T : \mathbb{U}] \}$

 $\mathcal{R}_T(0)$ is the reachable set of the corresponding linear control system.

Approximate Controllability

The semilinear system is said to be approximately controllable on $[t_0, T]$ if and only if $\mathcal{R}_T(f)$ is dense in \mathbb{X} , that means $\overline{\mathcal{R}_T(f)} = \mathbb{X}$. The corresponding linear system is approximately controllable if $\overline{\mathcal{R}_T(0)} = \mathbb{X}$.

Exact Controllability

The semilinear control system is said to be exactly controllable on $[t_0, T]$ if and only if $\mathcal{R}_T(f) = \mathbb{X}$. The corresponding linear system is exactly controllable if $\mathcal{R}_T(0) = \mathbb{X}$.

An important result on the controllability of semilinear systems by Naito, 1987

- The semigroup S(t) is compact,
- **2** The nonlinear function f(t, x) is Lipschitz continuous,
- $||f(t,x)|| \le M$, where *M* is a positive constant,
- For every $p \in Z = L_2[0, T; \mathbb{X}]$, there exists a $q \in \overline{R(B)}$ such that Lp = Lq, where the operator $L : Z \to \mathbb{X}$ is defined as

$$Lz = \int_0^T S(T-s)z(s)ds.$$

Condition (4) of the above theorem implies that the corresponding linear system is approximately controllable.

* Naito, K.; Controllability of semilinear control systems dominated by the linear part. SIAM J. Control and Optimization 1987, Vol. 25, 715-722.

Atangana-Baleanu Fractional Evolution Equation

$$D_{0^+}^{\alpha} x(t) = Ax(t) + Bu(t) + f(t, x(t)), \quad t \in (0, T],$$

$$x(0) = x_0,$$
(14)

where

- $D_{0^+}^{\alpha}$ represents the A-B fractional derivative of order $\alpha \in (0, 1)$ in the Caputo sense.
- The state variable $x(\cdot)$ belongs to the Banach space $(X, \|\cdot\|)$.
- The linear operator $A : \mathcal{D}(A) \subset X \to X$ is infinitesimal generator of a α resolvent family $(\mathcal{T}_{\alpha}(t))_{t \geq 0}$.
- *U* be the Banach space of admissible control functions such that the control function $u(\cdot) \in L^2([0, T], U)$.
- $B: L^2([0,T], U) \to L^2([0,T], X)$ denotes a bounded linear operator.
- $f: (0,T) \times X \to X$ is a given nonlinear function.

Mittag-Leffler Function

The ML function of one parameter family given by

$$M_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(\alpha k + 1)}, \quad Re(\alpha) > 0, \ x \in \mathbb{C}(\text{the set of complex numbers}).$$
(15)

Atangana-Baleanu Fractional Derivative

The A-B fractional derivative of a function x of order $\alpha \in (0, 1)$ in Caputo sense is defined as

$$D_{0+}^{\alpha}x(t) = \frac{E(\alpha)}{1-\alpha} \int_{0}^{t} x'(s) M_{\alpha}(-\eta(t-s)^{\alpha}) ds, \quad 0 < t \le T,$$
(16)

where $E(\alpha) = (1 - \alpha) + \alpha / \Gamma(\alpha)$ denotes a normalization function that satisfies $E(0) = E(1) = 1, M_{\alpha}$ denotes the Mittag-Leffler function with $\eta = \frac{\alpha}{1 - \alpha}$.

Resolvent Set

For a linear operator A, the set $\rho(A) := \{\mu \in \mathbb{C} : (\mu I - A) \text{ is invertible}\}$ is called resolvent set and the family $\mathcal{R}(\mu, A) := (\mu I - A)^{-1}$ is called the resolvent of A.

Sectorial Operator

A closed linear operator A is called sectorial operator if for $\sigma \in \mathbb{R}$ and $\theta \in [\frac{\pi}{2}, \pi]$, there exist $\lambda > 0$ such that

(i)
$$\rho(A) \subset \sum_{\theta,\sigma} = \{\mu \in \mathbb{C} : \mu \neq \sigma, |\arg(\mu - \sigma)| < \theta\},\$$

(*ii*) $\|\mathcal{R}(\mu, A)\| \leq \frac{\lambda}{|\mu - \sigma|}, \mu \in \sum_{\theta, \sigma}$.

* Pazy, A.; Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44, Springer, New York, 1983.

Mild Solution

For given sectorial operator A, the mild solution x(t) of Equation (14) is defined as

$$\begin{aligned} x(t) = R\mathcal{S}_{\alpha}(t)x_{0} + \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} [Bw(s) + f(s,x(s))] ds \\ + \frac{\alpha R^{2}}{E(\alpha)} \int_{0}^{t} \mathcal{T}_{\alpha}(t-s) [Bw(s) + f(s,x(s))] ds, \end{aligned}$$
(17)

 $\forall t \in [0, T]$, where *R* and *V* are linear operators given by

$$R = \sigma(\sigma I - A)^{-1}, \quad V = \eta A (\sigma I - A)^{-1} \text{ with } \sigma = \frac{E(\alpha)}{1 - \alpha},$$
$$S_{\alpha}(t) = M_{\alpha}(-Vt^{\alpha}) = \frac{1}{2\pi i} \int_{c} e^{st} s^{\alpha - 1} (s^{\alpha} I - V)^{-1} ds,$$

and

$$\mathcal{T}_{\alpha}(t) = t^{\alpha-1} M_{\alpha,\alpha}(-Vt^{\alpha}) = \frac{1}{2\pi i} \int_{c} e^{st} (s^{\alpha}I - V)^{-1} ds,$$

where c denotes a certain path lying on $\sum_{\theta,\sigma}$.

Reachable Set

Consider the reachable set $K_T(f, u) := \{x(T, x_0, u) : u(\cdot) \in L^2([0, T], U)\}$ of (14) which is collection of all final states *x* at terminal time *T* with initial state x_0 and control *u*.

Exact Controllability

The fractional evolution equation (14) is said to be exactly controllable on [0, T] if and only if $K_T(f, u) = \mathcal{D}(A)$.

Integral Contractor

A bounded linear operator $\Phi : [0, T] \times X \to \mathcal{B}(X)$ is called a bounded integral contractor of function *f* with respect to the operator $\mathcal{T}_{\alpha}(t)$ if there exists a constant $\tau > 0$ such that

$$\left\| f\left(t, x(t) + y(t) + \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Phi(s, x(s))y(s)ds + \frac{\alpha R^2}{E(\alpha)} \int_0^t \mathcal{T}_\alpha(t-s)\Phi(s, x(s))y(s)ds \right) - f(t, x(t)) - \Phi(t, x(t))y(t) \right\| \le \tau \|y(t)\|,$$
(18)

for all $t \in (0, T)$ and $x, y \in X$.

* George R. K.; Approximate controllability of semilinear systems using integral contractors, Numer. Funct. Anal. Optim., 16(1995), 127-138.

Regular Integral Contractor

if for any $x, z \in X$, the integral equation

$$z(t) = y(t) + \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Phi(s, x(s))y(s)ds + \frac{\alpha R^2}{E(\alpha)} \int_0^t \mathcal{T}_\alpha(t-s)\Phi(s, x(s))y(s)ds$$
(19)

admits a solution $y \in X$, then Φ is called a regular integral contractor.

* George R. K.; Approximate controllability of semilinear systems using integral contractors, Numer. Funct. Anal. Optim., 16(1995), 127-138.

Remark

For the case $\Phi \equiv 0$, the nonlinear function f(t, x(t)) has to satisfy the following Lipschitz-type condition:

$$\|f(t, x(t) + y(t)) - f(t, x(t))\| \le \tau \|y(t)\|,$$
(20)

In other words, if f satisfies this condition, then it has the regular integral contractor $\Phi \equiv 0$. Thus, the results obtained in the present paper are also valid for those functions which satisfy this Lipschitz-type condition.

Generalized Gronwall's inequality

Let x(t) and c(t), $t \in [0, T)$, be two nonnegative locally integrable functions such that

$$x(t) \le c(t) + h \int_0^t (t-s)^{\alpha-1} x(s) ds$$
 (21)

for some $h \ge 0$ and $\alpha > 0$. Then

$$x(t) \le c(t) + \int_0^t \left[\sum_{n=1}^\infty \frac{(h\Gamma(\alpha))^n}{\Gamma(n\alpha)} (t-s)^{n\alpha-1} c(s) \right] ds, \quad 0 \le t < T.$$
(22)

* Haiping Y., Jianming G. and Yongsheng D.; A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl. 328 (2007), No. 2, 1075-1081.

To find the existence of solution, we consider the following assumptions:

- (H_1) A is a sectorial operator.
- (*H*₂) *R* and *V* are bounded linear operators such that $||R|| \le k_1$ and $||V|| \le k_2$, where k_1 and k_2 are positive constants.
- (H_3) The nonlinear function $f:[0,T] \times X \to X$ fulfills the subsequent conditions
 - (i) f has a regular integral contractor Φ .
 - (*ii*) $f(\cdot, x) : [0, T] \to X$ is measurable for every $x \in X$;
 - (*iii*) $f(t, \cdot) : X \to X$ is continuous for almost every $t \in [0, T]$;

Theorem

If $(H_1) - (H_3)$ holds true, the fractional evolution equation (14) has a unique mild solution.

Outline of the Proof

Consider the two sequences $\{x_n\}$ and $\{y_n\}$ in *X* defined as

$$\begin{aligned} x_{0}(t) = RS_{\alpha}(t)x_{0} + \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1}Bw(s)ds + \frac{\alpha R^{2}}{E(\alpha)} \int_{0}^{t} \mathcal{T}_{\alpha}(t-s)Bw(s)ds, \quad (23) \\ y_{n}(t) = x_{n}(t) - \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1}f(s,x_{n}(s))ds \\ &- \frac{\alpha R^{2}}{E(\alpha)} \int_{0}^{t} \mathcal{T}_{\alpha}(t-s)f(s,x_{n}(s))ds - x_{0}(t), \quad (24) \\ x_{n+1}(t) = x_{n}(t) - \left[y_{n}(t) + \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1}\Phi(s,x_{n}(s))y_{n}(s)ds \\ &+ \frac{\alpha R^{2}}{E(\alpha)} \int_{0}^{t} \mathcal{T}_{\alpha}(t-s)\Phi(s,x_{n}(s))y_{n}(s)ds \right]. \end{aligned}$$

Step 1: The sequence $\{y_n\}$ **converges to zero as** $n \to \infty$. Using Equation (24) and (25)

$$\begin{aligned} x_{n+1}(t) &= \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Phi(s, x_n(s)) y_n(s) ds + \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, x_n(s)) ds \\ &- \frac{\alpha R^2}{E(\alpha)} \int_0^t \mathcal{T}_\alpha(t-s) \Phi(s, x_n(s)) y_n(s) ds + \frac{\alpha R^2}{E(\alpha)} \int_0^t \mathcal{T}_\alpha(t-s) f(s, x_n(s)) ds + x_0(t). \end{aligned}$$

Again, from Equation (24)

$$\|y_{n+1}(t)\| \leq \left[\frac{k_1k_2\tau(1-\alpha)}{E(\alpha)\Gamma(\alpha)} + \frac{\alpha\tau(k_1)^2D_{\tau}}{E(\alpha)}\right]\int_0^t (t-s)^{\alpha-1}\|y_n(s)\|ds.$$

By induction, we obtain

$$\|y_{n+1}\| \le \frac{\left[\frac{T(k_1k_2\tau(1-\alpha)+\Gamma(1+\alpha)\tau(k_1)^2D_{\mathcal{T}})}{E(\alpha)}\right]^{n+1}}{\Gamma(1+(n+1)\alpha)}\|y_0\|.$$
(26)

Let

$$p = \frac{T(k_1k_2\tau(1-\alpha) + \Gamma(1+\alpha)\tau(k_1)^2D_{\mathcal{T}})}{E(\alpha)}$$

Then

$$M_{\alpha}(p) = \sum_{n=0}^{\infty} \frac{p^n}{\Gamma(1+n\alpha)}.$$

From the convergence of Mittag-Leffler function of order α at point p, we obtain that $\{y_n\} \to 0$ as $n \to \infty$ in X.

Step 2: $\{x_n\}$ is a Cauchy sequence in *X* which converges to a point in *X*. From Equation (25) and (26)

$$\|x_{n+1}(t) - x_n(t)\| \le \left[1 + \frac{k_1 k_2 \nu (1-\alpha) T^{\alpha}}{E(\alpha) \Gamma(1+\alpha)} + \frac{T^{\alpha}(k_1)^2 D_{\mathcal{T}}}{E(\alpha)}\right] \frac{p^n}{\Gamma(1+n\alpha)} \|q_0\|.$$

As such, we have

$$\begin{aligned} \|x_n - x_m\| &\leq \sum_{k=m}^{n-1} \|x_{k+1} - x_k\| \\ &\leq \left[1 + \frac{k_1 k_2 \nu (1-\alpha) T^{\alpha}}{E(\alpha) \Gamma(1+\alpha)} + \frac{T^{\alpha} (k_1)^2 D_{\mathcal{T}}}{E(\alpha)} \right] \|q_0\| \sum_{k=m}^{n-1} \frac{p^n}{\Gamma(1+n\alpha)}, \end{aligned}$$

for $n > m \ge 0$. Hence $\{x_n\}$ is a Cauchy sequence in X which will converge to a point say x^* in X.

Using equation (24) and the well known Lebesgue dominated convergence theorem

$$\lim_{n \to \infty} y_n(t) = \lim_{n \to \infty} x_n(t) - \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \lim_{n \to \infty} \int_0^t (t-s)^{\alpha-1} f(s, x_n(s)) ds$$
$$- \frac{\alpha R^2}{E(\alpha)} \lim_{n \to \infty} \int_0^t \mathcal{T}_\alpha(t-s) f(s, x_n(s)) ds - x_0(t),$$

which implies

$$\begin{aligned} x^*(t) = & R\mathcal{S}_{\alpha}(t)x_0 + \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} [Bw(s) + f(s, x^*(s))] ds \\ &+ \frac{\alpha R^2}{E(\alpha)} \int_0^t \mathcal{T}_{\alpha}(t-s) [Bw(s) + f(s, x^*(s))] ds. \end{aligned}$$

Which proves that x^* is the mild solution of Equation (14).

Step 3: To prove the uniqueness of solution by utilizing the regularity property of the integral contractor. For fixed control $u \in L^2([0, T], U)$, let x_1 and x_2 be two solutions of Equation (14). Then

$$x_2(t) - x_1(t) = \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} [f(s,x_2(s)) - f(s,x_1(s))] ds$$
(27)

$$+\frac{\alpha R^2}{E(\alpha)}\int_0^t \mathcal{T}_\alpha(t-s)[f(s,x_2(s))-f(s,x_1(s))]ds.$$
(28)

Using definition of regular integral contractor and equation (19), we obtain

$$\|x_2(t) - x_1(t)\| \le \left[\frac{k_1k_2\tau(1-\alpha)}{E(\alpha)\Gamma(\alpha)} + \frac{\alpha\tau D_{\mathcal{T}}(k_1)^2}{E(\alpha)}\right] \int_0^t (t-s)^{\alpha-1} \|x_2(s) - x_1(s)\| ds.$$

Using Generalized Gronwall inequality for fractional fractional differential equations, we get $||x_2(t) - x_1(t)|| = 0$ for any $t \in [0, T]$ i.e $x_1 = x_2$. Hence the solution of Equation (14) is unique.

Assumptions

 (H_4) The linear equation corresponding to Equation (14)

$$D_{0+}^{\alpha}x(t) = Ax(t) + Bw(t), \quad t \in (0,T]$$

x(0) = x₀,

is exact controllable with control w.

 $(H_5) \ \mathcal{R}(f) \subseteq \mathcal{R}(B).$

(29)

Theorem

If assumptions $(H_1) - (H_5)$ hold true, then the fractional evolution equation (14) is exactly controllable.

Outline of the proof

Consider the linear A-B fractional evolution equation

$$D_{0^+}^{\alpha} y(t) = A y(t) + B w(t), \quad t \in (0, T],$$

$$y(0) = y_0 = \varphi.$$
(30)

Using Definition (17), we obtain

$$y(t) = R\mathcal{S}_{\alpha}(t)\varphi + \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)}\int_{0}^{t} (t-s)^{\alpha-1}Bw(s)ds + \frac{\alpha^{2}}{E(\alpha)}\int_{0}^{t}\mathcal{T}_{\alpha}(t-s)Bw(s)ds.$$
(31)

Also, consider the perturbed equation

$$D_{0}^{\alpha} + x(t) = Ax(t) + Bw(t) + f(t, x(t)) - f\left(t, y(t) + \frac{RV(1 - \alpha)}{E(\alpha)\Gamma(\alpha)} \int_{0}^{t} (t - s)^{\alpha - 1} \Phi(s, x(s))(y - x)(s) ds + \frac{\alpha R^{2}}{E(\alpha)} \int_{0}^{t} \mathcal{T}_{\alpha}(t - s) \Phi(s, x(s))(y - x)(s) ds \right), \quad t \in (0, T],$$
(32)
$$x(0) = x_{0} = \varphi,$$

with mild solution

$$\begin{aligned} \mathbf{x}(t) = & R \mathcal{S}_{\alpha}(t) \varphi + \frac{R V(1-\alpha)}{E(\alpha) \Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} \left[B w(s) + f(s, x(s)) \right] \\ & - f \left(s, y(s) + \frac{R V(1-\alpha)}{E(\alpha) \Gamma(\alpha)} \int_{0}^{s} (s-\xi)^{\alpha-1} \Phi(\xi, x(\xi))(y-x)(\xi) d\xi \right] \\ & + \frac{\alpha R^{2}}{E(\alpha)} \int_{0}^{s} \mathcal{T}_{\alpha}(s-\xi) \Phi(\xi, x(\xi))(y-x)(\xi) d\xi \right] ds \\ & + \frac{\alpha R^{2}}{E(\alpha)} \int_{0}^{t} \mathcal{T}_{\alpha}(t-s) \left[B w(s) + f(s, x(s)) \right] \\ & - f \left(s, y(s) + \frac{R V(1-\alpha)}{E(\alpha) \Gamma(\alpha)} \int_{0}^{s} (s-\xi)^{\alpha-1} \Phi(\xi, x(\xi))(y-x)(\xi) d\xi \right) \right] ds \end{aligned}$$

$$(33)$$

Equation (14) and (32) implies

$$Bu(t) = Bw(t) - f\left(t, y(t) + \frac{RV(1-\alpha)}{E(\alpha)\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Phi(s, x(s))(y-x)(s) ds + \frac{\alpha R^2}{E(\alpha)} \int_0^t \mathcal{T}_\alpha(t-s) \Phi(s, x(s))(y-x)(s) ds\right),$$
(34)

which holds due to the assumption (H_5) .

Also, subtracting Equation (33) from (31),

$$\|y(t) - x(t)\| \le (\tau + \nu) \left[\frac{k_1 k_2 (1 - \alpha)}{E(\alpha) \Gamma(\alpha)} + \frac{\alpha D \tau(k_1)^2}{E(\alpha)} \right] \int_0^t (t - s)^{\alpha - 1} \|(y - x)(s)\| ds.$$

Using Generalized Gronwall inequality for fractional fractional differential equations, we obtain ||y(t) - x(t)|| = 0 i.e. ||y - x|| = 0. Hence y(t) = x(t) for all $t \in [0, T]$. Hence every mild solution of the linear Equation (30) is also a mild solution of semilinear Equation (32) which implies that $K_T(0, w) \subset K_T(f, u)$. Moreover, from assumption (H_4), we have $K_T(0, w) = D(A)$. Hence $K_T(f, u) = D(A)$, which assures that the fractional evolution equation (14) is exactly controllable over [0, T].

Thank You