Roots of Identity Operator and Proximal Mappings: Classical and Phantom Cycle and Gap Vectors

Xianfu Wang shawn.wang@ubc.ca

Department of Mathematics University of British Columbia Kelowna, BC, Canada

Workshop on Nonlinear Functional Analysis and Its Applications Technion, Israel Institute of Technology

16:00pm–16:30pm, Tuesday, April 5, 2022

Joint work with H.H. Bauschke, S. Alwadani

Abstract

Using the Attouch-Théra Duality, we study the cycles, gap vectors of compositions of proximal mappings.

- Sufficient conditions are given under which the cycles and gap vectors exist.
- Phantom cycles and gap vectors are introduced to tackle the situations when the classical ones do not exist.

Recently, Simons provided a lemma for a support function of a closed convex set to study the geometry conjecture on cycles of projections. We

- extend Simons's lemma to closed convex functions,
- show its connections to Attouch–Théra duality, and
- use it to characterize classical and phantom cycles and gap vectors.

One can study phantom cycles and gap vectors of a convex function associated with an arbitrary isometry, rather than just the right-shift operator.

Outline

- What is a cycle for a composition of proximal mappings?
- 2 Classical cylcles and gap vectors via the Attouch-Théra duality
- Imagination: phantom cycle and gap vectors
 - Examples
- Simons: *m*th roots of identity operator and an average operator
- 6 Characterizations of classical cycle and gap vectors
 - Phantom cycle and gap vectors for arbitrary isometry R

Conclusions

Outline

What is a cycle for a composition of proximal mappings?

- 2 Classical cylcles and gap vectors via the Attouch-Théra duality
- Imagination: phantom cycle and gap vectors
- Examples
- Simons: *m*th roots of identity operator and an average operator
- 6 Characterizations of classical cycle and gap vectors
- Phantom cycle and gap vectors for arbitrary isometry R
- 8 Conclusions

Setup

X is a real Hilbert space with inner product $\langle \cdot, \cdot \rangle \colon X \times X \to [0, +\infty[$ and induced norm $\| \cdot \| = \sqrt{\langle \cdot, \cdot \rangle}$.

The set of proper lower semicontinuous convex functions from X to $(-\infty, +\infty]$ is denoted by $\Gamma_0(X)$.

In the product space $\mathbf{X} = X^m$ with $m \in \mathbb{N}$, we let

$$\Delta = \{(x, \dots, x) \mid x \in X\},\$$

$$\mathbf{R} : \mathbf{X} \to \mathbf{X} : (x_1, x_2, \dots, x_m) \mapsto (x_m, x_1, \dots, x_{m-1}), \text{ and}$$

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\|x_1\|^2 + \dots + \|x_m\|^2}$$

where $\mathbf{x} = (x_1, x_2, ..., x_m)$. For a finite family of functions $(f_i)_{i=1}^m$ in $\Gamma_0(X)$, define its separable sum by

$$\mathbf{f} = f_1 \oplus \cdots \oplus f_m : \mathbf{X} \to]-\infty, +\infty] : (x_1, \ldots, x_m) \mapsto \sum_{i=1}^m f_i(x_i).$$
(1)

The proximal mapping of f_i is defined by $\operatorname{prox}_{f_i} = (\operatorname{Id} + \partial f_i)^{-1}$ where ∂f_i denotes the subdifferential of f_i .

A cycle of **f** is a vector $\mathbf{z} = (z_1, \ldots, z_m) \in \mathbf{X}$ such that

$$Z_1 = \operatorname{prox}_{f_1} Z_m, \quad Z_2 = \operatorname{prox}_{f_2} Z_1, \quad Z_3 = \operatorname{prox}_{f_3} Z_2, \cdots,$$
 (2)

$$Z_{m-1} = \operatorname{prox}_{f_{m-1}} Z_{m-2}, \quad Z_m = \operatorname{prox}_{f_m} Z_{m-1}.$$
 (3)

The set of all cycles of **f** will be denoted by **Z**.

In the frame work of product space **X**, with $\mathbf{z} = (z_1, \dots, z_m)$, the operator form of (2)–(3) is

$$\mathbf{z} = \operatorname{prox}_{\mathbf{f}} \mathbf{R} \mathbf{z}, \text{ equivalently,}$$
 (4)

in terms of monotone operators

$$\mathbf{0} \in \partial \mathbf{f}(\mathbf{z}) + \mathbf{z} - \mathbf{R}\mathbf{z},\tag{5}$$

where the displacement mapping Id $-\mathbf{R}$ is maximally monotone but not a gradient of convex function unless m = 2.

Notation

The Fenchel conjugate of f is

$$f^*: X \to [-\infty, +\infty]: x^* \mapsto \sup_{x \in X} (\langle x, x^* \rangle - f(x)).$$

The infimal convolution of f, g is

$$f \Box g : X \rightarrow [-\infty, +\infty] : x \mapsto \inf_{y \in X} (f(y) + g(x - y)),$$

and it is exact at a point $x \in X$ if $(\exists y \in X) (f \Box g)(x) = f(y) + g(x - y)$; $f \Box g$ is exact if it is exact at every point of its domain.

The subdifferential of *f* is the set-valued operator

$$\partial f: X \rightrightarrows X: x \mapsto \{x^* \in X \mid (\forall y \in X) f(y) \ge f(x) + \langle u, y - x \rangle\}.$$

We use cl f for the lower semicontinuous hull of f.

X. Wang (UBC Okanagan)

For a set $C \subset X$, its indicator function is defined by

$$\iota_{\mathcal{C}}(x) = egin{cases} 0, & ext{if } x \in \mathcal{C}, \ +\infty, & ext{if } x
ot\in \mathcal{C}. \end{cases}$$

When the set *C* is nonempty closed convex, we write $P_C = \text{prox}_{\iota_C}$ for the projection operator and $N_C = \partial \iota_C$ for the normal cone.

Let $Id : X \to X$ be the identity operator. An operator $N : X \to X$ is

- nonexpansive if $(\forall x, y \in X) ||Nx Ny|| \le ||x y||$;
- 3 firmly nonexpansive if 2N Id is nonexpansive;
- Solution β -cocercive if βN is firmly nonexpansive for some $\beta \in]0, +\infty[$.

Prime examples of firmly nonexpansive mappings are proximal mappings of convex functions.

As usual, Fix $N = \{x \in X \mid Nx = x\}$ denotes the set of fixed points of N.

For a monotone operator $A : X \Rightarrow X$, we write $\tilde{A} = (-\operatorname{Id}) \circ A^{-1} \circ (-\operatorname{Id})$.

Blanket assumptions

Recall the diagonal set in X^m by

$$\Delta = \{(x,\ldots,x) \mid x \in X\}.$$

Throughout, we shall assume that

(*f_i*)^{*m*}_{*i*=1} are in Γ₀(*X*), and **f** is given by (1).
 2

$$\mathsf{dom}(\mathbf{f}^* + \iota_{\Delta}^*) = \mathsf{dom}(\mathbf{f}^* + \iota_{\Delta^{\perp}}) \neq \emptyset, \tag{6}$$

equivalently, dom $\mathbf{f}^* \cap \Delta^{\perp} \neq \emptyset$. This will assure that $\mathbf{f}_{\Box \iota_{\Delta}}$ is proper convex, and possess a continuous minorant.

Some facts

The key tool we shall use is the following Attouch-Théra duality.

Fact 1 (Attouch-Théra duality [3])

Let $A, B : X \Rightarrow X$ be maximally monotone operators. Let S be the solution set of the primal problem

find
$$x \in X$$
 such that $0 \in Ax + Bx$. (7)

Let S* be the solution set of the dual problem

find
$$x^* \in X$$
 such that $0 \in A^{-1}x^* + \widetilde{B}(x^*)$. (8)

Then
3
$$S = \{x \in X \mid (\exists x^* \in S^*) \ x^* \in Ax \text{ and } -x^* \in Bx\}.$$

3 $S^* = \{x^* \in X \mid (\exists x \in S) \ x \in A^{-1}x^* \text{ and } -x \in \widetilde{B}(x^*)\}.$

Important properties of the circular right shift operator come as follows.

Fact 2

For the circular right shift operator **R**, the following hold:

■ Id – **R** is maximally monotone.

② $(Id - \mathbf{R})^{-1} = \frac{1}{2} Id + N_{\Delta^{\perp}} + T$ where $T : \mathbf{X} \to \mathbf{X}$ is a skew operator defined by

$$T = \frac{1}{2m} \sum_{k=1}^{m-1} (m-2k) \mathbf{R}^k.$$

In particular, dom $(Id - \mathbf{R})^{-1} = \Delta^{\perp}$.

 $(\frac{1}{2}\operatorname{Id} + T)^{-1} = \operatorname{Id} - \mathbf{R} + 2P_{\Delta}.$

Lemma 3

Let $f : X \to]-\infty, +\infty]$ be proper and convex, and $x \in X$. Then the following hold:

- If $\partial f(x) \neq \emptyset$, then f is lower semicontinuous at x.
- 2 If $f(x) = \operatorname{cl} f(x)$, that is, f is lower semicontinuous at x, then $\partial f(x) = \partial \operatorname{cl} f(x)$.
- $In general, \partial f \subseteq \partial \operatorname{cl} f.$

Lemma 4

Let $f, g \in \Gamma_0(X)$ and $x, y \in X$. Then the following hold:

- If $(f \Box g)(x) = f(y) + g(x y)$, then $\partial(f \Box g)(x) = \partial f(y) \cap \partial g(x y)$.
- 3 If $\partial f(y) \cap \partial g(x-y) \neq \emptyset$, then $(f \Box g)(x) = f(y) + g(x-y)$ and

$$\partial(f\Box g)(x) = \partial f(y) \cap \partial g(x-y).$$

③ In general,
$$\partial(f\Box g)(x) \supseteq \partial f(y) \cap \partial g(x - y)$$
.

Fact 5

Suppose that $S = \bigcap_{i=1}^{m} \operatorname{argmin} f_i \neq \emptyset$. Then

$$\mathbf{Z} = \{(z,\ldots,z) \mid z \in S\}.$$

Outline

What is a cycle for a composition of proximal mappings?

2 Classical cylcles and gap vectors via the Attouch-Théra duality

Imagination: phantom cycle and gap vectors

Examples

- Simons: mth roots of identity operator and an average operator
- 6 Characterizations of classical cycle and gap vectors
- Phantom cycle and gap vectors for arbitrary isometry R

8 Conclusions

Using the Attouch-Théra duality with $A = \partial \mathbf{f}$ and $B = Id - \mathbf{R}$, and the identity

$$-\operatorname{Id}\circ(\operatorname{Id}-\mathbf{R})^{-1}\circ(-\operatorname{Id})=(\operatorname{Id}-\mathbf{R})^{-1}$$

for linear relation $(Id - \mathbf{R})^{-1}$, we can formulate the primal-dual inclusion problem:

$$(P) \quad 0 \in \partial \mathbf{f}(\mathbf{x}) + (\mathrm{Id} - \mathbf{R})\mathbf{x}, \tag{9}$$
$$(D) \quad 0 \in (\partial \mathbf{f})^{-1}(\mathbf{y}) + (\mathrm{Id} - \mathbf{R})^{-1}\mathbf{y}. \tag{10}$$

Theorem 6

The solution set of (D) is at most a singleton (possibly empty).

Proof.

Since $(Id - \mathbf{R})^{-1} = \frac{1}{2} Id + N_{\Delta^{\perp}} + T$ by Fact 2, the monotone operator

$$\partial \mathbf{f}^{-1} + (\operatorname{Id} - \mathbf{R})^{-1} = \frac{1}{2} \operatorname{Id} + (N_{\Delta^{\perp}} + T + \partial \mathbf{f}^{-1})$$

is strongly monotone, so $[\partial \mathbf{f}^{-1} + (\mathrm{Id} - \mathbf{R})^{-1}]^{-1}(0)$ is at most a singleton.

Theorem 7

Consider the sets of classical cycles and classical gap vectors defined respectively by

$$\mathbf{Z} = \big\{ \mathbf{x} \in \mathbf{X} \mid \mathbf{0} \in \partial \mathbf{f}(\mathbf{x}) + (\mathsf{Id} - \mathbf{R})\mathbf{x} \big\},\tag{11}$$

$$\mathbf{G} = \big\{ \mathbf{y} \in \mathbf{X} \mid \mathbf{0} \in (\partial \mathbf{f})^{-1}(\mathbf{y}) + (\mathsf{Id} - \mathbf{R})^{-1}\mathbf{y} \big\}.$$
(12)

We have

2 $\mathbf{G} = \bigcup \{ \mathbf{R}\mathbf{x} - \mathbf{x} \mid \mathbf{x} \in \mathbf{Z} \}$. If $\mathbf{G} \neq \emptyset$, then \mathbf{G} is a singleton $\mathbf{y} \in \Delta^{\perp}$ and $\mathbf{y} = \mathbf{R}\mathbf{x} - \mathbf{x}$ for every $\mathbf{x} \in \mathbf{Z}$.

Outline

- What is a cycle for a composition of proximal mappings?
- 2 Classical cylcles and gap vectors via the Attouch-Théra duality

Imagination: phantom cycle and gap vectors

- 4 Examples
- Simons: mth roots of identity operator and an average operator
- 6 Characterizations of classical cycle and gap vectors
- Phantom cycle and gap vectors for arbitrary isometry R
- 8 Conclusions

Extending the dual approach

Since the linear relation $(Id - \mathbf{R})^{-1} = \frac{1}{2} Id + N_{\Delta^{\perp}} + T$ by Fact 2, and $\partial \iota_{\Delta}^* = \partial \iota_{\Delta^{\perp}} = N_{\Delta^{\perp}}$, we have

$$\partial \mathbf{f}^{-1} + (\mathrm{Id} - \mathbf{R})^{-1} = \partial \mathbf{f}^* + \frac{1}{2} \mathrm{Id} + T + \partial \iota_{\Delta}^* = \partial \mathbf{f}^* + \partial \iota_{\Delta}^* + \frac{1}{2} \mathrm{Id} + T$$
(13)
$$\subseteq \partial (\mathbf{f}^* + \iota_{\Delta}^*) + \frac{1}{2} \mathrm{Id} + T$$
(14)
$$= \frac{1}{2} [\mathrm{Id} + (2T + 2\partial (\mathbf{f}^* + \iota^*))]$$
(15)

$$= \frac{1}{2} \left[\operatorname{Id} + \left(2T + 2\partial (\mathbf{f}^* + \iota_{\Delta}^*) \right) \right].$$
 (15)

The enlarged dual

$$(\tilde{D}) \quad 0 \in \partial(\mathbf{f}^* + \iota_{\Delta}^*)(\mathbf{y}) + \frac{1}{2}\mathbf{y} + T\mathbf{y}$$
(16)

always has a unique solution. We call the **y** given by (16) as the *phantom gap* vector of $cl(\mathbf{f} \Box \iota_{\Delta})$.

Extending the primal approach

One can also start from the primal

$$(P) \quad 0 \in \partial \mathbf{f}(\mathbf{u}) + (\mathsf{Id} - \mathbf{R})\mathbf{u}.$$

Because $\partial \mathbf{f} + (Id - \mathbf{R})$ is already maximally monotone by [4], one cannot do enlargements so that (*P*) has a solution. We need to rewrite it in an equivalent form. In view of

$$-(\operatorname{\mathsf{Id}}-\mathbf{R})\mathbf{u}\in\partial\mathbf{f}(\mathbf{u}),\quad -(\operatorname{\mathsf{Id}}-\mathbf{R})\mathbf{u}\in\Delta^{\perp},$$

Lemmas 4 and 3, we have

$$-(\mathsf{Id} - \mathbf{R})\mathbf{u} \in \partial \mathbf{f}(\mathbf{u}) \cap \Delta^{\perp}$$
(17)

$$=\partial \mathbf{f}(\mathbf{u}) \cap \partial \iota_{\Delta}(\mathbf{d}) \subseteq \partial (\mathbf{f} \Box \iota_{\Delta})(\mathbf{u} + \mathbf{d})$$
(18)

$$\subseteq \partial [\mathsf{cl} \, (\mathbf{f} \Box \iota_{\Delta})] (\mathbf{u} + \mathbf{d}), \tag{19}$$

where $\mathbf{d} \in \Delta$.

Because $(Id - \mathbf{R})(\mathbf{d}) = 0$, we can write equations (17)–(19) as

$$0 \in \partial [\mathsf{cl}\,(\boldsymbol{\mathsf{f}} \square \iota_\Delta)](\boldsymbol{\mathsf{u}} + \boldsymbol{\mathsf{d}}) + (\mathsf{Id} - \boldsymbol{\mathsf{R}})(\boldsymbol{\mathsf{u}} + \boldsymbol{\mathsf{d}}).$$

With

$$\mathbf{d} = (-\sum_{i=1}^m u_i/m, \dots, -\sum_{i=1}^m u_i/m) \in \Delta$$

and

$$\mathbf{x} = \mathbf{u} + \mathbf{d} \in \Delta^{\perp},$$

we have

$$0 \in \partial [\operatorname{cl} (\mathbf{f} \Box \iota_{\Delta})](\mathbf{x}) + (\operatorname{Id} - \mathbf{R})(\mathbf{x}), \text{ and } \mathbf{x} \in \Delta^{\perp}.$$
 (20)

The solution **x** given by (20) is called a *phantom cycle* of $cl(\mathbf{f} \Box \iota_{\Delta})$.

The primal-dual approach

The phantom cycle and gap vectors of $cl(\mathbf{f} \Box \iota_{\Delta})$ can be put into the frame work of the Attouch-Théra duality.

Theorem 8

Consider the following Attouch-Théra primal-dual problems

$$(\tilde{P}) \quad 0 \in \partial[\mathsf{cl}(\mathbf{f} \square \iota_{\Delta})](\mathbf{x}) + (\mathsf{Id} - \mathbf{R})\mathbf{x} \text{ and } \mathbf{x} \in \Delta^{\perp},$$
(21)

$$(\tilde{D}) \quad 0 \in \partial(\mathbf{f}^* + \iota_{\Delta}^*)(\mathbf{y}) + \frac{1}{2}\mathbf{y} + T\mathbf{y}.$$
(22)

Then the following hold:

- (D̃) is the Attouch-Théra dual of (P̃), and (D̃) has a unique solution.
- (\tilde{P}) has a unique solution.

Lemma 9

We have ran ∂ [cl(**f** $\Box \iota_{\Delta}$)] $\subseteq \Delta^{\perp}$.

• For $A: X \rightrightarrows X$, ran A denotes the range of A.

Proof.

①: Let us consider the Attouch-Théra dual of (\tilde{D}) . As $(\mathbf{f}^* + \iota_{\Delta}^*)^* = cl(\mathbf{f} \Box \iota_{\Delta})$, we have

$$0 \in \partial [\operatorname{cl}(\mathbf{f} \Box \iota_{\Delta})](\mathbf{x}) + \left(\frac{1}{2} \operatorname{Id} + T\right)^{-1} (\mathbf{x}).$$
(23)

Since $(\frac{1}{2} \operatorname{Id} + T)^{-1} = \operatorname{Id} - \mathbf{R} + 2P_{\Delta}$ by Fact 23, we obtain

 $0 \in \partial [\mathsf{cl}(\boldsymbol{f} \Box \iota_{\Delta})](\boldsymbol{x}) + (\mathsf{Id} - \boldsymbol{R})\boldsymbol{x} + 2P_{\Delta}(\boldsymbol{x}).$

Because $ran(Id - \mathbf{R}) \subseteq \Delta^{\perp}$, and Lemma 9, the above implies

 $-2\textit{P}_{\Delta}(\textbf{x})\in\partial[\mathsf{cl}(\textbf{f}\square\iota_{\Delta})](\textbf{x})+(\mathsf{Id}-\textbf{R})\textbf{x}$

from which $2P_{\Delta}(\mathbf{x}) \in \Delta \cap \Delta^{\perp}$, so $P_{\Delta}(\mathbf{x}) = 0$, and $\mathbf{x} \in \Delta^{\perp}$. Hence, (23) is equivalent to

$$0 \in \partial [cl(\boldsymbol{f} \Box \iota_{\Delta})](\boldsymbol{x}) + (Id - \boldsymbol{R})\boldsymbol{x}, \text{ and } \boldsymbol{x} \in \Delta^{\perp},$$
(24)

which is precisely (21). (\tilde{D}) has a unique solution by Theorem 6.

Recovering the classical cycle from the phantom cycle under

Theorem 10

Let **x** be a phantom cycle of $cl(\mathbf{f} \Box \iota_{\Delta})$, *i.e.*,

$$(\tilde{P}) \quad 0 \in \partial [\operatorname{cl}(\mathbf{f} \Box \iota_{\Delta})](\mathbf{x}) + (\operatorname{Id} - \mathbf{R})\mathbf{x}, \text{ and } \mathbf{x} \in \Delta^{\perp}.$$

lf

$$cl(\mathbf{f}\Box\iota_{\Delta})(\mathbf{x}) = (\mathbf{f}\Box\iota_{\Delta})(\mathbf{x}), \text{ and } \mathbf{f}\Box\iota_{\Delta} \text{ is exact at } \mathbf{x},$$

then $\mathbf{x} = \mathbf{u} + \mathbf{v}, \mathbf{v} = (-\sum_{i=1}^{m} u_i/m, \dots, -\sum_{i=1}^{m} u_i/m) \in \Delta, \text{ and}$
$$\mathbf{0} \in \partial \mathbf{f}(\mathbf{u}) + (Id - \mathbf{R})\mathbf{u}.$$

Consequently, **u** is a classical cycle for **f**.

Classical cycles become the phantom cycle under a shift

Theorem 11

Let $\mathbf{u} = (u_1, \dots, u_m)$ with $u_i \in X$ for $i = 1, \dots, m$, and let \mathbf{u} be a classical cycle for \mathbf{f} , *i.e.*,

$$0 \in \partial \mathbf{f}(\mathbf{u}) + (\mathsf{Id} - \mathbf{R})\mathbf{u}. \tag{25}$$

Set $\mathbf{v} = (-\sum_{i=1}^m u_i/m, \dots, -\sum_{i=1}^m u_i/m) \in \Delta$ and $\mathbf{x} = \mathbf{u} + \mathbf{v}$. Then

1 $\mathbf{f}_{\Box \iota_{\Delta}}$ is lower semicontinuous and exact at \mathbf{x} .

2 $\mathbf{x} \in \Delta^{\perp}$ and \mathbf{x} solves

 $(\tilde{P}) \quad 0 \in \partial(\mathbf{f} \Box \iota_{\Delta})(\mathbf{x}) + (\mathrm{Id} - \mathbf{R})\mathbf{x} = \partial[\mathrm{cl}(\mathbf{f} \Box \iota_{\Delta})](\mathbf{x}) + (\mathrm{Id} - \mathbf{R})\mathbf{x}.$ (26)

Consequently, **x** is a phantom cycle for $cl(\mathbf{f} \Box \iota_{\Delta})$.

The following result summarizes the relationship among the classical cycles, phantom cycle and gap vectors.

Corollary 12

With **x** and **y** given in Theorem 8, the following hold:

- **1** $\mathbf{x}, \mathbf{y} \in \Delta^{\perp}$.
- $2 y = \mathbf{R}\mathbf{x} \mathbf{x}.$
- **3** $\mathbf{Z} = (\mathbf{x} + \Delta) \cap (\partial \mathbf{f})^{-1} (\mathbf{R}\mathbf{x} \mathbf{x}) = (\operatorname{Id} \mathbf{R})^{-1} (-\mathbf{y}) \cap (\partial f)^{-1} (\mathbf{y}).$
- **5** $\mathbf{Z} \subseteq (F_1 \times \cdots \times F_m) \cap (\operatorname{Id} \mathbf{R})^{-1}(-\mathbf{y}).$

Characterization of $Z \neq \emptyset$ via phantom cycles

Recall the parallel sum $(\forall x \in X) (\partial f \Box \partial g)(x) = \bigcup_{x=u+v} \partial f(u) \cap \partial g(v)$.

Corollary 13

Let x by given in Theorem 8. Then the following are equivalent:

- **1** $\mathbf{Z} \neq \emptyset$.
- 2 $cl(f \Box \iota_{\Delta})(\mathbf{x}) = (f \Box \iota_{\Delta})(\mathbf{x})$ and $f \Box \iota_{\Delta}$ is exact at \mathbf{x} .
- $(\partial \mathbf{f} \Box \partial \iota_{\Delta})(\mathbf{x}) \neq \emptyset.$

Outline

What is a cycle for a composition of proximal mappings?

- 2 Classical cylcles and gap vectors via the Attouch-Théra duality
- Imagination: phantom cycle and gap vectors

Examples

- 5 Simons: *m*th roots of identity operator and an average operator
- 6 Characterizations of classical cycle and gap vectors
- Phantom cycle and gap vectors for arbitrary isometry R

8 Conclusions

For $C_i \subseteq X$, $i = 1, \ldots, m$, we let

$$\mathbf{C} = C_1 \times \cdots \times C_m \subseteq \mathbf{X}.$$

The first example illustrates the concepts of generalized cycles and gap vectors when the classical ones do not exist.

Example 14

Let $\alpha \geq 0$. Consider

$$\mathcal{C}_1 = \operatorname{epi} \exp = \{(x, r) \mid r \ge \exp(-x) + \alpha \text{ and } x \in \mathbb{R}\}, \text{ and } \mathcal{C}_2 = \mathbb{R} \times \{0\}.$$

Then

- **1** $\iota_{\mathbf{C}}$ has neither a cycle nor a gap vector.
- 2 cl $(\iota_{\mathbf{C}} \Box \iota_{\Delta}) = \iota_{\overline{\mathbf{C}} + \Delta}$ has both a generalized cycle and a generalized gap vector, namely $\mathbf{x} = (\mathbf{0}, \alpha/2, \mathbf{0}, -\alpha/2), \mathbf{y} = (\mathbf{0}, -\alpha, \mathbf{0}, \alpha) \in \mathbb{R}^4$.

The second example characterizes when the set of cycles is a singleton or infinite for a finite number of lines in a Hilbert space.

Example 15

Given *m* sets in *X*: $C_i = \{a_i + t_i b_i \mid t_i \in \mathbb{R}\}$ where $a_i \in X$ and $b_i \in X \setminus \{0\}$ for i = 1, ..., m. Then the following hold:

- **1** $\iota_{\mathbf{C}}$ always has a classical cycle, i.e., $\mathbf{Z} \neq \emptyset$.
- 2 ι_{c} has a unique classical cycle if and only if the set of vectors $\{b_i \mid i = 1, ..., m\}$ is not parallel.
- So ι_{c} has infinitely many classical cycles if and only if the set of vectors $\{b_i \mid i = 1, ..., m\}$ is parallel.

Finding phantom cycle and gap vectors

In view of the possibility of $\mathbf{Z} = \emptyset$, one can consider the extended Attouch-Théra primal-dual:

$$(\mathsf{EP}) \quad \mathbf{0} \in \partial \operatorname{cl}(\mathbf{f} \square \iota_{\Delta})(\mathbf{x}) + (\mathsf{Id} - \mathbf{R})\mathbf{x}, \tag{27}$$

(ED)
$$0 \in \partial(\mathbf{f}^* + \iota_{\Delta}^*)(\mathbf{y}) + \frac{1}{2}\mathbf{y} + T\mathbf{y}.$$
 (28)

Both (EP) and (ED) always have solutions.

While (EP) gives all generalized cycles, (ED) gives the unique generalized gap vector for $cl(\mathbf{f}_{\Box \iota_{\Delta}})$. To make the notation simple in the following proof, let us write

$$\mathbf{g} = \mathsf{cl}(\mathbf{f} \Box \iota_{\Delta}).$$

Theorem 16

Let $\gamma \in]0, 1[$, $\delta = 2 - \gamma$, and let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence in $]0, \delta[$ such that $\sum_{n \in \mathbb{N}} \lambda_n(\delta - \lambda_n) = +\infty$. Let $\mathbf{x}_0 \in \mathbf{X}$ and set

for
$$n = 0, 1, ...$$

 $\mathbf{y}_n = (1 - \gamma)\mathbf{x}_n + \gamma \mathbf{R}\mathbf{x}_n,$ (29)
 $\mathbf{x}_{n+1} = \mathbf{x}_n + \lambda_n(\operatorname{prox}_{\gamma \mathbf{g}} \mathbf{y}_n - \mathbf{x}_n).$

Then the following hold:

- (x_n)_{n∈ℕ} converges weakly to x, a generalized cycle of g, i.e., a solution of (EP).
- (Rx_n − x_n)_{n∈N} converges strongly to y = Rx − x, the unique generalized gap vector of g, i.e., the solution of (ED).

Outline

- What is a cycle for a composition of proximal mappings?
- 2 Classical cylcles and gap vectors via the Attouch-Théra duality
- Imagination: phantom cycle and gap vectors
- **Examples**

Simons: *m*th roots of identity operator and an average operator

- Characterizations of classical cycle and gap vectors
- Phantom cycle and gap vectors for arbitrary isometry R
- 8 Conclusions

In 2021, Simons considered the root of identity operator: $R: X \to X$ is linear and $R^m = Id$.

Define the average operator

$$A=rac{1}{m}\sum_{i=1}^m R^i, ext{ and } Y=\ker(A)=ig\{y\in X\mid Ay=0ig\}.$$

Also define $S: X \to X$ by

$$S = R - \mathsf{Id}$$

and $Q: X \rightarrow X$ by

$$Q=\frac{1}{m}\sum_{i=1}^{m-1}iR^{i},$$

and $Q_0 = Q|_Y$, the restriction of Q to Y. Linear operators A, S, Q and subspace Y are crucial in Simons' analysis [10].

Fact 17 (Simons '2021)

The following hold:

 $I S(X) \subseteq Y, and Q(Y) \subseteq Y.$

$$(\forall y \in Y) \ S(Qy) = y, \text{ and } Q(Sy) = y.$$

- IS = SA = 0.
- SQ = QS = Id A.
- **(**) $-Q_0 Id/2$ is skew and so maximally monotone on Y.
- If *R* is an isometry, then $(\forall x \in X) 2\langle x, Sx \rangle + ||Sx||^2 = 0$.

Example 18

A linear operator $R: X \to X$ satisfying $R^m = Id$ does not imply R nonexpansive. Let e_1, e_2, e_3, e_4 be the canonical base of the Euclidean space \mathbb{R}^4 .

Bambaii–Chowla's matrix (1946): Set

$$B_1 = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Then $B_1^5 = \text{Id but } ||B_1e_1|| = \sqrt{2} > 1 = ||e_1||.$

2 Set

$$B_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Then $B_2^2 = \text{Id but } \|B_2 e_4\| = \sqrt{20} > 1 = \|e_4\|.$

Turnbull's matrix (1927): Set

$$B_3 = \begin{pmatrix} -1 & 1 & -1 & 1 \\ -3 & 2 & -1 & 0 \\ -3 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

Then $B_3^3 = \text{Id but } \|B_3e_1\| = \sqrt{20} > 1 = \|e_1\|.$

٠

However, the following holds.

Lemma 19

Let $R : X \to X$ be linear and $R^m = Id$ for $m \in \mathbb{N}$. Then the following are equivalent:

- R is nonexpansive.
- R is an isometry.
- R* is nonexpansive.
- R* is an isometry.

With Example 18 and Proposition 19 in mind, when R is an isometry we have the following new properties of A and S. We show that A is in fact a projection, and that

$$Y=(\mathsf{Fix}\, R)^{ot}=\mathsf{ran}\, S$$

whenever *R* is an isometry.

Theorem 20

Suppose that R is an isometry. Then the following hold:

• ker
$$A = \ker A^* = (\operatorname{Fix} R)^{\perp} = (\operatorname{Fix} R^*)^{\perp}$$
.

2 $A = P_{\text{Fix } R} = P_{\text{Fix } R^*} = A^*$. In particular, ran $A = \text{ran } A^* = \text{Fix } R$ is closed.

• ran $S = (Fix R)^{\perp} = ran S^*$. In particular, ran $S = ran S^*$ is closed.

Example 21

Without *R* being isometric, Theorem 20 fails. Take B_2 in Example 18(ii) where m = 2 to obtain

$$A = \frac{1}{2}(B_2 + B_2^2) = \begin{pmatrix} 1 & 1/2 & 1/2 & 1/2 \\ 0 & 0 & -1 & -3/2 \\ 0 & 0 & 1 & 3/2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Because

$$\|\textit{Ae}_4\| = \sqrt{19/4} > \|\textit{e}_4\|,$$

the operator A can neither be nonexpansive nor a projection operator.

Extended Simons' lemma

We call the following result the extended Simons's lemma.

Lemma 22

Let $f \in \Gamma_0(X)$ with $Y \cap \text{dom } f^* \neq \emptyset$. Then there exists a unique pair of vectors $(e, d) = (e_f, d_f) \in Y \times Y$ such that $d = Se \in \text{dom } f^*$, e = Qd, and

$$(\forall y \in Y) f^*(Se) + \langle y - Se, e \rangle - f^*(y) \le 0;$$

equivalently, $e \in \partial (f^* + \iota_Y)(Se)$. Consequently,

$$(\forall x \in X) f^*(Se) + \langle Sx - Se, e \rangle - f^*(Sx) \leq 0.$$

• In [10, Lemma 16] Simons proved Lemma 22 when $f = \sigma_C$, a support function of a closed convex set $C \subseteq X$.

Lemma 23

Let $f \in \Gamma_0(X)$ with $Y \cap \text{dom } f^* \neq \emptyset$. Then the vector $e = e_f \in Y$ from Lemma 22 is the unique vector satisfying

$$(f^* + \iota_Y)(Se) - \langle Se, e \rangle + cl(f \Box \iota_{Y^{\perp}})(e)$$
(30)

$$= (f^* + \iota_Y)(Se) - \langle Se, e \rangle + (f^* + \iota_Y)^*(e) = 0.$$
(31)

Theorem 24

Let *R* be an isometry and $Y = (Fix R)^{\perp}$, let $f \in \Gamma_0(X)$ with $Y \cap \text{dom } f^* \neq \emptyset$, and let $(e, d) \in Y \times Y$ be given by Lemma 22. Consider the Attouch–Théra primal-dual inclusion problem:

$$(P) \quad 0 \in \partial \operatorname{cl}(f \Box \iota_{Y^{\perp}})(x) + (\operatorname{Id} - R)x, \tag{32}$$

(D)
$$0 \in \partial (f^* + \iota_Y)(y) + (\operatorname{Id} - R)^{-1} y.$$
 (33)

Then the following hold:

- (e, d) is a solution to the primal-dual problem (32)–(33), i.e., e solves (P) and d solves (D). Moreover, d is the unique solution of (D).
- 2 (e, d) is the unique solution of the primal-dual problem

$$\begin{array}{ll} (P') & 0 \in \partial \operatorname{cl}(f \Box \iota_{Y^{\perp}})(x) + (\operatorname{Id} - R)x \quad and \quad x \in Y, \\ (D') & 0 \in \partial (f^* + \iota_Y)(y) + (\operatorname{Id} - R)^{-1}y. \end{array}$$
(34)

More specifically, e is the unique solution of (P') and d is the unique solution of (D').

X. Wang (UBC Okanagan)

Outline

- What is a cycle for a composition of proximal mappings?
- 2 Classical cylcles and gap vectors via the Attouch-Théra duality
- Imagination: phantom cycle and gap vectors
- 4 Examples
- 5 Simons: *m*th roots of identity operator and an average operator
- Characterizations of classical cycle and gap vectors
 - Phantom cycle and gap vectors for arbitrary isometry R

8 Conclusions

Theorem 25

Let $f \in \Gamma_0(X)$ with $Y \cap \text{dom } f^* \neq \emptyset$ and let $(e, d) \in Y \times Y$ be given by Lemma 22. Then the following statements are equivalent for every $z \in X$:

).

Proof of Theorem 25 I

$$\textcircled{0} \Leftrightarrow \textcircled{2}: z = \operatorname{prox}_{f} Rz \Leftrightarrow Rz \in z + \partial f(z) \Leftrightarrow Sz \in \partial f(z) \Leftrightarrow$$

$$f^*(Sz) + f(z) = \langle z, Sz \rangle = -\frac{1}{2} \|Sz\|^2.$$

(2)⇒(3): By (2),

$$f^*(Sz) + f(z) + \frac{1}{2} ||Sz||^2 = 0.$$
 (36)

By Lemma 22,

$$f^*(Se) + \langle Sz - Se, e \rangle - f^*(Sz) \leq 0.$$

Adding above two equations yields

$$f^*(Se) + f(z) + \langle Sz - Se, e \rangle + rac{1}{2} \|Sz\|^2 \leq 0.$$

Since

$$f^*(Se) + f(z) \ge \langle Se, z \rangle,$$

Proof of Theorem 25 II

by the Fenchel-Young inequality, and

$$\frac{1}{2}\|Sz\|^2 = -\langle Sz, z\rangle,$$

we have

$$\langle \textit{Se}, \textit{z}
angle + \langle \textit{Sz} - \textit{Se}, \textit{e}
angle - \langle \textit{Sz}, \textit{z}
angle \leq 0,$$

from which

$$-\langle S(z-e), z-e \rangle = -\langle Sz-Se, z-e \rangle \leq 0.$$

Then $\frac{1}{2}||S(z-e)||^2 \le 0$, so Sz = Se = d. Also, by Lemma 23 and $\langle Se, e \rangle = -\frac{1}{2}||Se||^2 = -\frac{1}{2}||Sz||^2$, we obtain

$$f^*(Sz) + \frac{1}{2} \|Sz\|^2 + cl(f_{\Box \iota_{Y\perp}})(e) = 0.$$
 (37)

Combining (36) and (37) gives $f(z) = cl(f_{\Box \ell Y^{\perp}})(e)$. (3) \Rightarrow (2):

1

Proof of Theorem 25 III

Now ③ ensures Sz = d = Se and $cl(f \Box \iota_{Y^{\perp}})(e) = f(z)$. Also

$$\langle \boldsymbol{S} \boldsymbol{e}, \boldsymbol{e}
angle = -rac{1}{2} \| \boldsymbol{S} \boldsymbol{e} \|^2 = -rac{1}{2} \| \boldsymbol{S} \boldsymbol{z} \|^2.$$

Then (30) in Lemma 23 gives

$$f^*(Sz) + \frac{1}{2}||Sz||^2 + f(z) = 0,$$

which is (2). (3) \Leftrightarrow (4): Assume that Sz = d = Se. Then $z - e \in S^{-1}(0) = \text{Fix } R$. Since $cl(f_{\Box \ell Y^{\perp}})$ is translation-invariant with respect to $Y^{\perp} = \text{Fix } R$, we have

$$\operatorname{cl}(f \Box \iota_{Y^{\perp}})(z) = \operatorname{cl}(f \Box \iota_{Y^{\perp}})(e).$$

When does

$$f(z) = \operatorname{cl}(f \Box \iota_{Y^{\perp}})(e)$$

or

$$f(z) = \mathsf{cl}(f \Box \iota_{Y^{\perp}})(z)?$$

Translation-invariant functions

Definition 26

We say that $f : X \to]-\infty, +\infty]$ is translation-invariant with respect to a subset *C* of *X* if f(x + c) = f(x) for every $x \in X$ and $c \in C$.

Lemma 27

Let $f \in \Gamma_0(X)$ and let *C* be a closed linear subspace of *X*. If *f* is translation-invariant with respect to *C*, then dom $f^* \subseteq C^{\perp}$ and

$$(f^* + \iota_{\mathcal{C}^{\perp}})^* = \mathsf{cl}(f \Box \iota_{\mathcal{C}}) = f \Box \iota_{\mathcal{C}} = f.$$

Theorem 28

Let $f \in \Gamma_0(X)$ be translation-invariant with respect to Fix R and such that $Y \cap \text{dom } f^* \neq \emptyset$ where $Y = (\text{Fix } R)^{\perp}$. Let $d \in Y$ be given by Lemma 22. Then the following statements are equivalent for every $z \in X$:

•
$$z = \operatorname{prox}_f Rz.$$

2
$$f^*(Sz) + f(z) + \frac{1}{2} ||Sz||^2 = 0.$$

Minimizers of f

Lemma 29

Let $f \in \Gamma_0(X)$ with $Y \cap \text{dom } f^* \neq \emptyset$ and let $(e, d) \in Y \times Y$ be given by Lemma 22. Suppose in addition that Sz = d and $z \in \text{argmin } f$. Then

$$z = \operatorname{prox}_{f} Rz, and$$
 (38)

$$cl(f_{\Box}\iota_{Y^{\perp}})(e) = cl(f_{\Box}\iota_{Y^{\perp}})(z) = \min cl(f_{\Box}\iota_{Y^{\perp}}) = f(z).$$
(39)

Theorem 30

Let $f \in \Gamma_0(X)$ with $Y \cap \text{dom } f^* \neq \emptyset$ and let $d \in Y$ be given by Lemma 22. Then the following statements are equivalent for every $z \in \text{argmin } f$:

•
$$z = \operatorname{prox}_f Rz.$$

2
$$f^*(Sz) + \frac{1}{2} ||Sz||^2 + f(z) = 0.$$

Immediately we obtain the following result of Simons [10, Theorem 7].

Corollary 31

Let *C* be a nonempty closed convex subset of *X*. Let $d \in Y$ be given by Lemma 22 with $f = \iota_c$. Then the following statements are equivalent for every $z \in C$:

$$I = P_C R z.$$

2
$$\sigma_C(Sz) + \frac{1}{2} ||Sz||^2 = 0.$$

$$Sz = d.$$

Outline

- What is a cycle for a composition of proximal mappings?
- 2 Classical cylcles and gap vectors via the Attouch-Théra duality
- Imagination: phantom cycle and gap vectors
- Examples
- 5 Simons: *m*th roots of identity operator and an average operator
- Characterizations of classical cycle and gap vectors
- Phantom cycle and gap vectors for arbitrary isometry R

Conclusions

The next result makes it clear that the classical cycles and gap vector of a function *f* are closely related to those of $cl(f_{\Box \ell \gamma \perp})$ and to which we refer as *phantom cycles* and *phantom gap vector*.

Theorem 32

Let $f \in \Gamma_0(X)$ with $Y \cap \text{dom } f^* \neq \emptyset$ and let $(e, d) = (e_f, d_f)$ be given by Lemma 22. Then the following hold:

- The set Z of phantom cycles of f, which are defined to be the set of classical cycles of the function cl(f□ly⊥), i.e.,
 Z = {z ∈ X | z = prox_{cl(f□ly⊥})(Rz)}, is always nonempty and
 Z = e + Y[⊥]. Consequently, Z contains infinitely many elements whenever Y[⊥] = Fix R ≠ {0}.
- 2 The phantom gap vector of *f*, i.e., the gap vector d_{cl(f□ℓ_{Y⊥})}, is equal to d = Sz ∈ Y for every z ∈ Z; moreover, e_{cl(f□ℓ_{Y⊥})} = e.

Outline

- What is a cycle for a composition of proximal mappings?
- 2 Classical cylcles and gap vectors via the Attouch-Théra duality
- Imagination: phantom cycle and gap vectors
- Examples
- Simons: *m*th roots of identity operator and an average operator
- 6 Characterizations of classical cycle and gap vectors
- Phantom cycle and gap vectors for arbitrary isometry R

Conclusions

 The Attouch-Théra duality provide a unified framework for studying cycles and gap vectors;

- The Attouch-Théra duality provide a unified framework for studying cycles and gap vectors;
- 2 To define phantom cycles and gap vectors, one has to use $cl(f \Box \iota_{\Delta})$;

- The Attouch-Théra duality provide a unified framework for studying cycles and gap vectors;
- 2 To define phantom cycles and gap vectors, one has to use $cl(f \Box \iota_{\Delta})$;
- The forward-backward algorithms can be used to compute the phantom cycles and gap vectors;

- The Attouch-Théra duality provide a unified framework for studying cycles and gap vectors;
- 2) To define phantom cycles and gap vectors, one has to use $cl(f \Box \iota_{\Delta})$;
- The forward-backward algorithms can be used to compute the phantom cycles and gap vectors;
- How do we approach

 $0\in \boldsymbol{A}\boldsymbol{x}+\boldsymbol{x}-\boldsymbol{R}\boldsymbol{x}$

for a general maximally monotone operator A?

References I

- [1] S. Alwadani, H.B. Bauschke, J.P. Revalski, and X. Wang, The difference vectors for convex sets and a resolution of the geometry conjecture, in press, *Open Journal of Mathematical Optimization* 2 (2021), article no. 5, 18 p.
- [2] S. Alwadani, H.B. Bauschke, and X. Wang, Attouch-Théra duality, generalized cycles and gap vectors, *SIAM Journal on Optimization* 31 (2021), 1926–1946.
- [3] H. Attouch and M. Théra, A general duality principle for the sum of two operators, *Journal of Convex Analysis* 3 (1996), 1–24.
- [4] H.H. Bauschke and P.L. Combettes, *Convex Analysis and Monotone Operator Theory in Hilbert Spaces*, Springer, 2011.
- [5] H.H. Bauschke and X. Wang, Roots of the identity operator and proximal mappings: (classical and phantom) cycles and gap vectors, to appear in *Proceedings of the AMS*.

References II

- [6] H.H. Bauschke, P.L. Combettes, and S. Reich, The asymptotic behavior of the composition of two resolvents, *Nonlinear Analysis* 60 (2005), 283–301.
- [7] R.E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, *Houston Journal of Mathematics* 3 (1977), 459–470.
- [8] P.L. Combettes and J.-C. Pesquet, Fixed point strategies in data science, *IEEE Trans. Signal Process.* 69 (2021), 3878–3905.
- [9] R.T. Rockafellar and R. J-B Wets, *Variational Analysis*, Springer-Verlag, New York, 1998.
- [10] S. Simons, *m*th roots of the identity operator and the geometry conjecture, to appear in *Proceedings of the AMS*.
- [11] X. Wang and H.H. Bauschke, Compositions and averages of two resolvents: relative geometry of fixed points sets and a partial answer to a question by C. Byrne, *Nonlinear Analysis* 74 (2011), 4550–4572.

References III

Thank you!

X. Wang (UBC Okanagan)