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Abstract

Using the Attouch-Théra Duality, we study the cycles, gap vectors of
compositions of proximal mappings.

@ Sufficient conditions are given under which the cycles and gap vectors
exist.

© Phantom cycles and gap vectors are introduced to tackle the situations
when the classical ones do not exist.

Recently, Simons provided a lemma for a support function of a closed convex
set to study the geometry conjecture on cycles of projections. We

@ extend Simons’s lemma to closed convex functions,
@ show its connections to Attouch—Théra duality, and
© use it to characterize classical and phantom cycles and gap vectors.

One can study phantom cycles and gap vectors of a convex function
associated with an arbitrary isometry, rather than just the right-shift operator.
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What is a cycle for a composition of proximal mappings?
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What is a cycle for a composition of proximal mappings?
Setup

X is a real Hilbert space with inner product (-, -): X x X — [0, +oo[ and
induced norm || - || = v/ (-, ).

The set of proper lower semicontinuous convex functions from X to (—oo, +o0]
is denoted by Ny(X).

In the product space X = X™ with m € N, we let
A={(x,...,x) | x € X},
R:X—=X:(xi,%,...,Xm) = (Xm, X4, ..., Xm—1), and

%I = VOx) = /132 + -+ [ xm] 2

where X = (X1, X2, . .., Xm). For a finite family of functions ()7, in [o(X),
define its separable sum by

f=fo  @fn: X— ]-00,+00]: (X1,.... Xm) = > fi(X). (1)
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What is a cycle for a composition of proximal mappings?

The proximal mapping of f; is defined by prox; = (Id +0f)~" where 0f; denotes
the subdifferential of f;.

A cycle of f is a vector z = (z1, ..., Z5) € X such that
Zy = proxy Zm, Zo = proxy Zi, Z3 = proxy Zp,---, (2)
Zm_1 = proxe  Zm-2, Zm = prox; Zm 1. (3)

The set of all cycles of f will be denoted by Z.

In the frame work of product space X, with z = (z, ..., z;), the operator form
of (2)—(3) is
z = prox; Rz, equivalently, (4)

in terms of monotone operators
0 € 9f(z) +z — Rz, (5)

where the displacement mapping Id —R is maximally monotone but not a
gradient of convex function unless m = 2.
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What is a cycle for a composition of proximal mappings?

Notation

The Fenchel conjugate of f is

f*: X = [-o0,4+00] : X* — su?(((X,X*> — f(x)).

The infimal convolution of f, g is

fog: X — [—oo,+o0] : X yig((f(y) +9(x —y)),

and it is exact at a point x € X if (3y € X) (fog)(x) = f(y) + g(x — y); fog s
exact if it is exact at every point of its domain.

The subdifferential of f is the set-valued operator
of : X=X x—= {x*eX|(VyeX)f(y)>f(x)+{uy—x)}

We use cl f for the lower semicontinuous hull of f.
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What is a cycle for a composition of proximal mappings?

For a set C C X, its indicator function is defined by

vo(xX) = 0, if x € C,
T 100, ifxecC.

When the set C is nonempty closed convex, we write P¢ = prox,, for the
projection operator and Ng = d¢¢ for the normal cone.
Let Id : X — X be the identity operator. An operator N: X — X'is

@ nonexpansive if (Vx,y € X) [Nx — Ny|| < ||x — y|;

@ firmly nonexpansive if 2N — Id is nonexpansive;

© p-cocercive if BN is firmly nonexpansive for some 3 € ]0, +ool.
Prime examples of firmly nonexpansive mappings are proximal mappings of
convex functions.

As usual, Fix N = {x € X | Nx = x} denotes the set of fixed points of N.

For a monotone operator A: X = X, we write A = (—Id) o A~ o (— Id).
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What is a cycle for a composition of proximal mappings?

Blanket assumptions

Recall the diagonal set in X™ by
A={(x,....,x) | x e X}.
Throughout, we shall assume that

Q ()7, arein To(X), and f is given by (1).

2]
dom(f* +13) = dom(f* + 1) # @, (6)

equivalently, dom f* N A+ # @. This will assure that fOu is proper
convex, and possess a continuous minorant.
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What is a cycle for a composition of proximal mappings?

Some facts

The key tool we shall use is the following Attouch-Théra duality.

Fact 1 (Attouch-Théra duality [3])

Let A, B : X = X be maximally monotone operators. Let S be the solution set
of the primal problem

find x € X such that0 € Ax + Bx. (7)
Let S* be the solution set of the dual problem
find x* € X such that0 € A~'x* + B(x*). (8)

Then
Q@ S={xeX|(3x*e8)x*€Axand — x* € Bx}.
Q@ S ={xeX|(3xeS) xeA'x and — x € B(x*)}.
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What is a cycle for a composition of proximal mappings?

Important properties of the circular right shift operator come as follows.
Fact 2
For the circular right shift operator R, the following hold:

@ Id —R is maximally monotone.

Q@ (Id—R)™"=1Id+Na. + T where T : X — X is a skew operator defined
by

m—1

%Zm 2k)R

k=1
In particular, dom(ld —R)~" = A+,
Q (1d+T)" =1d—R+2P,.
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What is a cycle for a composition of proximal mappings?

Lemma 3

Letf: X — ]—o0,+00] be proper and convex, and x € X. Then the following
hold:

Q Ifof(x) # @, then f is lower semicontinuous at x.

Q Iff(x) = clf(x), thatis, f is lower semicontinuous at x, then
of(x) = dcl f(x).

© Ingeneral, 0f C dclf.
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What is a cycle for a composition of proximal mappings?

Lemma 4
Letf,g e To(X) and x,y € X. Then the following hold:
Q /f(fog)(x) = f(y) + g(x — y), then d(fog)(x) = 0f(y) N 0g(x — y).
Q Ifof(y)nadg(x —y) # @, then (fog)(x) = f(y) + g(x — y) and
o(fog)(x) = of(y) N og(x — y).

© Ingeneral, o(fog)(x) 2 of(y) N dg(x — y).

Fact 5
Suppose that S = (" argmin f; # @. Then
Z={(z,...,2)| z€ S}.
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Classical cylcles and gap vectors via the Attouch-Théra duality
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Classical cylcles and gap vectors via the Attouch-Théra duality

Using the Attouch-Théra duality with A = 9f and B = Id —R, and the identity
—Ido(ld—R)~" o (= Id) = (Id —R)~"

for linear relation (Id —R)~", we can formulate the primal-dual inclusion
problem:

(P) 0 € af(x) + (Id —R)x, (9)
(D) 0e (8~ '(y)+ (Id—R)y. (10)
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Classical cylcles and gap vectors via the Attouch-Théra duality

Theorem 6
The solution set of (D) is at most a singleton (possibly empty). )
Proof.
Since (Id —R)™" = % Id+Nx. + T by Fact 2, the monotone operator
1
oF '+ (1d—R)"! = Sld+(Naw + T+ ot ")
is strongly monotone, so [0f " + (Id —R)~']~'(0) is at most a singleton. O
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Classical cylcles and gap vectors via the Attouch-Théra duality

Theorem 7

Consider the sets of classical cycles and classical gap vectors defined
respectively by
Z={xeX|0 e of(x) + (Id —R)x}, (11)
G={yeX|0e (0f)"(y)+ (Id—R)"y}. (12)
We have
Q Z=J,(ld—R)~(=y) N (aF) 1 (y).

Q@ G=U{Rx—x|xeZ} IfG+ @, thenG is asingletony € A+ and
y=Rx—Xxforeveryx € Z.
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Imagination: phantom cycle and gap vectors
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Extending the dual approach

Since the linear relation (Id —R)~" = 11d + N> + T by Fact 2, and
Oup = Oipr = NpL, we have

1
oF '+ (Id—R)~" = of + % Id+T + O = OF + D + 5 1d +T (13)

ga(f*+bz)+%|d+r (14)
= %[m +(2T +20(F +:4))]. (15)

The enlarged dual
(D) 0caf +ia)y)+ y+ Ty (16)

always has a unique solution. We call the y given by (16) as the phantom gap
vector of cl(fdua).
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Imagination: phantom cycle and gap vectors

Extending the primal approach

One can also start from the primal
(P) 0 € of(u)+ (Id —R)u.

Because df + (Id —R) is already maximally monotone by [4], one cannot do
enlargements so that (P) has a solution. We need to rewrite it in an equivalent
form. In view of

—(Ild —R)u € f(u), —(Id —R)uc A*,

Lemmas 4 and 3, we have

—(ld—R)u € of(u) n A+ (17)
— O(u) N dua(d) C (fTa)(u + d) (18)
C O[cl (faea)](u + d), (19)

where d € A.
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Imagination: phantom cycle and gap vectors

Because (Id —R)(d) = 0, we can write equations (17)—(19) as

0 € O[cl (foea)l(u + d) + (Id —R)(u + d).

With
m m
d:(qu,-/m,...,qu,-/m) €A
i=1 i=1
and
X=u+dec At
we have

0 € 9[cl (faea)](x) + (Id —R)(x), and x € AL, (20)

The solution x given by (20) is called a phantom cycle of cl(fd.a).
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The primal-dual approach

The phantom cycle and gap vectors of cl(fO:a) can be put into the frame work
of the Attouch-Théra duality.

Theorem 8

Consider the following Attouch-Théra primal-dual problems

(P) 0 € a[c(foua)](x) + (Id —R)x and x € At (21)
~ 1
(D) 0e€a(f + a)y) + SY+ Ty. (22)
Then the following hold:

@ (D) is the Attouch-Théra dual of (P), and (D) has a unique solution.
@ (P) has a unique solution.
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Imagination: phantom cycle and gap vectors

Lemma 9 J

We have ran d[cl(faua)] € A*.

e For A: X = X, ran A denotes the range of A.
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Imagination: phantom cycle and gap vectors

Proof.

(M: Let us consider the Attouch-Théra dual of (D). As (f* + 4)* = cl(fOua),
we have

0 € 9lcl(foua)](x) + (; Id +T> - (x). (23)
Since (1d+T)~" = Id —R + 2P, by Fact 23, we obtain

0 € 9[cl(fdea)](x) + (Id —R)x + 2Pa(X).
Because ran(ld —R) C A1, and Lemma 9, the above implies

—2Pa(x) € 9[cl(foea)](x) + (Id —R)x

from which 2PA(Xx) € AN A+, so Pa(x) =0, and x € A+. Hence, (23) is
equivalent to

0 € 9[c(faea)](x) + (Id —R)x, and x € A™*, (24)
which is precisely (21).
(D) has a unique solution by Theorem 6. DJ
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Imagination: phantom cycle and gap vectors

Recovering the classical cycle from the phantom cycle under . ..

Theorem 10
Let x be a phantom cycle of cl(fd.a), i.e.,
(P) 0 ¢ afcl(faea)l(x) + (Id —R)x, andx € A*.

If
c(foea)(x) = (fOea)(x), and fOua is exact at x,

thenx=u+v,v= (-, u/m,....— >, u/m)e A, and
0 € 8f(u) + (Id—R)u.

Consequently, u is a classical cycle forf.
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Imagination: phantom cycle and gap vectors

Classical cycles become the phantom cycle under a shift

Theorem 11
Letu = (uy,...,un) withu; € X fori=1,...,m, and let u be a classical cycle
forf, i.e.,

0 € of(u) + (Id —R)u. (25)

Setv=(=>",u/m,....,—> ", u/m)€ A andx =u-+V. Then
@ foua is lower semicontinuous and exact at Xx.
Q x c Al andx solves
(F’) 0 € 9(fea)(x) + (Id —R)x = 9[cl(foea)](x) + (Id —R)x. (26)

Consequently, x is a phantom cycle for cl(faua).
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Imagination: phantom cycle and gap vectors

The following result summarizes the relationship among the classical cycles,
phantom cycle and gap vectors.

Corollary 12

With x and'y given in Theorem 8, the following hold:

Q@ xycAl.
Q@ y=Rx—x
Q x=-%-Ty.

Q Z=(x+A)N () (Rx —x) = (Id—R)~'(~y) N ()~ (y).
Q ZC (F % x Fn) N (Id—R)~"(~y).
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Imagination: phantom cycle and gap vectors

Characterization of Z - & via phantom cycles

Recall the parallel sum (vVx € X) (0foog)(x) =U of(u) N ag(v).

X=u+Vv
Corollary 13

Let x by given in Theorem 8. Then the following are equivalent:
QZ+40.
Q c(foua)(x) = (foua)(x) and foOua is exact at x.

Q (ofodia)(x) # @.
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Examples

ForCiC X,i=1,...,m, we let
C=Cix---xChCX

The first example illustrates the concepts of generalized cycles and gap
vectors when the classical ones do not exist.

Example 14
Let o > 0. Consider
Ci =epiexp = {(x,r) | r > exp(—Xx) + @ and x € R}, and C, = R x {0}.

Then
@ ¢ has neither a cycle nor a gap vector.

Q cl(tcOea) = g has both a generalized cycle and a generalized gap
vector, namely x = (0, /2,0, —a/2),y = (0, —a,0,a) € R*.
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Examples

The second example characterizes when the set of cycles is a singleton or
infinite for a finite number of lines in a Hilbert space.

Example 15
Given msets in X: C; = {a; + tib; | t € R} where a; € X and b; € X\ {0} for
i=1,...,m. Then the following hold:

@ .c always has a classical cycle, i.e., Z # @.

© .c has a unique classical cycle if and only if the set of vectors
{bi|i=1,...,m} is not parallel.

@ .c has infinitely many classical cycles if and only if the set of vectors
{bi|i=1,...,m} is parallel.

X. Wang (UBC Okanagan) Phantom cyles and gap vectors April 4-6, 2022 31/63



Examples

Finding phantom cycle and gap vectors

In view of the possibility of Z = &, one can consider the extended
Attouch-Théra primal-dual:

(EP) 0 € dcl(foua)(x) + (Id —R)x, (27)
(ED) 0e€a(f* + 1)(y) + %y + Ty. (28)

Both (EP) and (ED) always have solutions.

While (EP) gives all generalized cycles, (ED) gives the unique generalized
gap vector for cl(fO.a ). To make the notation simple in the following proof, let
us write

g= C|(fDLA).
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Examples

Theorem 16

Let~ €]0,1[, 6 =2 —~, and let (An)nen be a sequence in |0, §[ such that
> nen An(6 — Ap) = +o0. LetXxg € X and set

forn=0,1,...
Yn = (1 —7)Xn +vRXp, (29)
Xn+1 == Xr) + )\n(prox,\/g yn - Xn).
Then the following hold:
@ (xn)nen converges weakly to x, a generalized cycle of g, i.e., a solution of
(EP).

©Q (Rx, — Xn)nen converges strongly toy = Rx — X, the unique generalized
gap vector of g, i.e., the solution of (ED).
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Simons: mth roots of identity operator and an average operator

In 2021, Simons considered the root of identity operator: R : X — X is linear
and R™ = Id.

Define the average operator

1 =
A_EER, and Y = ker(A) = {y € X | Ay =0}.
Also define S: X — X by
S=R-1Id
and Q: X — X by

1 m—1

Q:EZ'H",

i=1
and Qy = Q|y, the restriction of Q to Y. Linear operators A, S, Q and
subspace Y are crucial in Simons’ analysis [10].
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Simons: mth roots of identity operator and an average operator

Fact 17 (Simons "2021)

The following hold:

Q SX)CY,andQ(Y)CY.

Q (VyeY)S(Qy)=y, and Q(Sy) =y.

Q@ AS=SA=0.

Q SQ=QS=I1d-A

@ —Qy —Id/2 is skew and so maximally monotone on Y.
@ If R is an isometry, then (Vx € X) 2(x, Sx) + ||Sx||*> = 0.
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Simons: mth roots of identity operator and an average operator

Example 18

A linear operator R : X — X satisfying R™ = Id does not imply R
nonexpansive. Let ey, €2, €3, €4 be the canonical base of the Euclidean space
R*.

@ Bambaii—Chowla’s matrix (1946): Set

-1 -1 -1 -1
i1 0 0 O
Bi=1o 1 o o
0 0 1 0
Then BS =Id but |Biei|| = V2 > 1 = |le1].
Q Set
11 11
0 -1 -2 -3
Bo=1o 0o 1 3
0 0 0 -
Then B2 = Id but ||Bzes|| = V20 > 1 = ||e4]. )
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Simons: mth roots of identity operator and an average operator

@ Turnbull's matrix (1927): Set

11 -1 A
32 -1 0
Bs=1 31 0 o
10 0 O

Then B2 = Id but ||Bse|| = v20 > 1 = |&].
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Simons: mth roots of identity operator and an average operator

However, the following holds.
Lemma 19

Let R: X — X be linear and R™ = Id for m € N. Then the following are
equivalent:

@ R is nonexpansive.
© R is an isometry.
© R* is nonexpansive.
©Q R* is an isometry.
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Simons: mth roots of identity operator and an average operator

With Example 18 and Proposition 19 in mind, when R is an isometry we have
the following new properties of A and S. We show that A is in fact a projection,

and that
Y = (FixR)* =ran S

whenever R is an isometry.

Theorem 20

Suppose that R is an isometry. Then the following hold:
@ ker A= ker A* = (FixR)* = (Fix R*)*.
Q A= Prxr = Prixr- = A*. In particular, ran A = ran A* = Fix R is closed.
@ ran S = (Fix R)t = ran S*. In particular, ran S = ran S* is closed.
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Simons: mth roots of identity operator and an average operator

Example 21

Without R being isometric, Theorem 20 fails. Take B, in Example 18(ii) where
m = 2 to obtain

1 1/2 12 1/2

B o [0 0 -1 -3

A=3BtB)=10 o 1 32
0 0 0 0

Because

|Aes|| = \/19/4 > |[e4],

the operator A can neither be nonexpansive nor a projection operator.
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Simons: mth roots of identity operator and an average operator

Extended Simons’ lemma

We call the following result the extended Simons’s lemma.
Lemma 22

Let f € To(X) with Y ndom f* £ &. Then there exists a unique pair of vectors
(e,d) = (e, df) € Y x Y such thatd = Se € dom f*, e = Qd, and

(Vy e Y) f(Se)+ (y — Se,e) —f*(y) <0;

equivalently, e € O(f* + .y)(Se). Consequently,

(vx € X) f*(Se) + (Sx — Se, e) — f*(Sx) < 0.

e In [10, Lemma 16] Simons proved Lemma 22 when f = o¢, a support
function of a closed convex set C C X.
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Simons: mth roots of identity operator and an average operator

Lemma 23

Letf € I'o(X) with Y Ndom f* # &. Then the vectore = e; € Y from

Lemma 22 is the unique vector satisfying

(f"+y)(Se) — (Se, e) +cl(facyL)(e)

= (" + 1y)(Se) — (Se, &) + (" + 1y)*(e) = 0.
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Simons: mth roots of identity operator and an average operator

Theorem 24

Let R be an isometry and Y = (Fix R)*, let f € To(X) with Y N dom f* # &,
and let (e,d) € Y x Y be given by Lemma 22. Consider the Attouch—Théra
primal-dual inclusion problem:
(P) 0eoacd(fary.)(x)+ (Id—R)x, (32)
(D) 0ed(f +uy)(y)+ (d—R)y. (33)
Then the following hold:

@ (e, d) is a solution to the primal-dual problem (32)—<33), i.e., e solves (P)
and d solves (D). Moreover, d is the unique solution of (D).

Q (e, d) is the unique solution of the primal-dual problem
(P) 0edc(fary)(x)+(d—R)x and x €Y, (34)
(D) 0ed(f +u)(y)+(d=R)"y. (35)

More specifically, e is the unique solution of (P") and d is the unique
solution of (D').

y
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Characterizations of classical cycle and gap vectors
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Characterizations of classical cycle and gap vectors

Theorem 25

Letf e To(X) with Y ndom f* # & and let (e,d) € Y x Y be given by
Lemma 22. Then the following statements are equivalent for every z € X:

@ z = prox; Rz.

Q (Sz)+ f(z) + }||Sz||)> = 0.

Q Sz=dandf(z)=cl(facy.)(e).
Q Sz=dandf(z) = cl(fouy.)(2).
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Characterizations of classical cycle and gap vectors

Proof of Theorem 25 |

De@: z=proxs Rz < Rz € 2+ 0f(z) & Sz € 0f(z) &
1
*(Sz) +f(z) = (z,Sz) = —§||Sz||2.

@=Q: By @, 1
f*(Sz) + f(2) + E\|Sz||2 =0. (36)

By Lemma 22,
f*(Se) + (Sz — Se, e) — f*(Sz) < 0.

Adding above two equations yields
*(Se) + f(z) + (Sz — Se, e) + %HSZH2 <0.

Since
f*(Se) + f(z) > (Se, z),
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Characterizations of classical cycle and gap vectors

Proof of Theorem 25 Ii

by the Fenchel-Young inequality, and
1
51182| = —(Sz, 2),
2

we have

(Se,z) + (Sz — Se,e) — (Sz,z) <0,

from which
—(S(z—e),z—e)=—(Sz— Se,z—e) <0.

Then }||S(z — €)[|? < 0, so Sz = Se = d. Also, by Lemma 23 and
(Se,e) = — 1| Sel> = — 3| Sz||?, we obtain

f*(Sz) + %HSZHZ +cl(fouy)(e) = 0. (37)

Combining (36) and (37) gives f(z) = cl(fOcy.)(e).
@=@:
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Proof of Theorem 25 Il

Now @) ensures Sz = d = Se and cl(fOcy. )(e) = f(z). Also
(Se.e) = —[Sel[2 = || Sz]?
h 2 2 '
Then (30) in Lemma 23 gives
1
f*(Sz) + §\|Sz||2 +f(z) =0,
which is @).

@<=®@: Assume that Sz = d = Se. Then z — e € S~'(0) = Fix R. Since
cl(fauy.) is translation-invariant with respect to Y+ = Fix R, we have

c(fouyL)(2) = cl(fOuy)(e).

X. Wang (UBC Okanagan) Phantom cyles and gap vectors April 4-6, 2022 49/63



Characterizations of classical cycle and gap vectors

When does
f(z) = cl(facys)(e)

or
f(z) = cl(fOuyL)(2)?

X. Wang (UBC Okanagan) Phantom cyles and gap vectors April 4-6, 2022 50/63



Characterizations of classical cycle and gap vectors

Translation-invariant functions

Definition 26

We say that f : X — ]—o0, +00] is translation-invariant with respect to a
subset C of X if f(x 4+ ¢) = f(x) for every x € X and c € C.

Lemma 27

Letf € To(X) and let C be a closed linear subspace of X. Iff is
translation-invariant with respect to C, then dom f* C C* and

(f +100)* = dl(foug) = foug = f.
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Characterizations of classical cycle and gap vectors

Theorem 28

Let f € T'o(X) be translation-invariant with respect to Fix R and such that

Y Ndom f* £ & where Y = (FixR)L. Letd € Y be given by Lemma 22. Then
the following statements are equivalent for every z € X:

Q@ z = prox; Rz.
Q (Sz) +f(z) + }||Sz|]> = 0.
Q Sz=d.
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Characterizations of classical cycle and gap vectors
Minimizers of f

Lemma 29

Letf e I'o(X) with Y Ndom f* # @ and let (e,d) € Y x Y be given by
Lemma 22. Suppose in addition that Sz = d and z € argmin f. Then

z = prox; Rz, and (38)
f

c(foeys)(e) = cl(fOeyL)(2) = minc(fOey ) = f(2). (39)J
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Characterizations of classical cycle and gap vectors

Theorem 30

Letf € To(X) with Y Ndom f* # @ and letd € Y be given by Lemma 22. Then
the following statements are equivalent for every z € argmin f:

Q@ z = prox; Rz.

Q (Sz) + }||Sz|2 + f(z) = 0.

Q Sz=d.
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Characterizations of classical cycle and gap vectors

Immediately we obtain the following result of Simons [10, Theorem 7].

Corollary 31

Let C be a nonempty closed convex subset of X. Letd € Y be given by
Lemma 22 with f = 1c. Then the following statements are equivalent for every
zeC:

@ z=P:Rz.
@ 0c(Sz) + 31Sz|2 = 0.
Q@ Sz=d. )
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Phantom cycle and gap vectors for arbitrary isometry R

Outline
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Phantom cycle and gap vectors for arbitrary isometry R

The next result makes it clear that the classical cycles and gap vector of a
function f are closely related to those of cl(fOcy. ) and to which we refer as
phantom cycles and phantom gap vector.

Theorem 32

Letf € To(X) with Y ndom f* # & and let (e, d) = (er, di) be given by
Lemma 22. Then the following hold:

@ The set Z of phantom cycles of f, which are defined to be the set of
classical cycles of the function cl(fdicys), i.e.,
Z={zeX|z=proxm,, (R2)}, is always nonempty and
Z = e+ Y*. Consequently, Z contains infinitely many elements
whenever Y+ = Fix R # {0}.

© The phantom gap vector of f, i.e., the gap vector Qui(fon,, )» IS €qual to
d= Sz e Y forevery z € Z; moreover, eqfa.,, ) = €.

X. Wang (UBC Okanagan) Phantom cyles and gap vectors April 4-6, 2022 57/63



Conclusions

Outline

0 Conclusions

X. Wang (UBC Okanagan) Phantom cyles and gap vectors April 4-6, 2022 58/63



Conclusions

Conclusions

@ The Attouch-Théra duality provide a unified framework for studying cycles
and gap vectors;
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Conclusions

Conclusions

@ The Attouch-Théra duality provide a unified framework for studying cycles
and gap vectors;

© To define phantom cycles and gap vectors, one has to use cl(fdua);

© The forward-backward algorithms can be used to compute the phantom
cycles and gap vectors;

@ How do we approach
0 € Ax+x — Rx

for a general maximally monotone operator A?
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Conclusions

Thank you!
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