Roots of Identity Operator and Proximal Mappings: Classical and Phantom Cycle and Gap Vectors

Xianfu Wang
shawn.wang@ubc.ca

Department of Mathematics
University of British Columbia
Kelowna, BC, Canada

Workshop on Nonlinear Functional Analysis and Its Applications Technion, Israel Institute of Technology 16:00pm-16:30pm, Tuesday, April 5, 2022

Joint work with H.H. Bauschke, S. Alwadani

Abstract

Using the Attouch-Théra Duality, we study the cycles, gap vectors of compositions of proximal mappings.
(1) Sufficient conditions are given under which the cycles and gap vectors exist.
(2) Phantom cycles and gap vectors are introduced to tackle the situations when the classical ones do not exist.

Recently, Simons provided a lemma for a support function of a closed convex set to study the geometry conjecture on cycles of projections. We
(1) extend Simons's lemma to closed convex functions,
(2) show its connections to Attouch-Théra duality, and
(3) use it to characterize classical and phantom cycles and gap vectors.

One can study phantom cycles and gap vectors of a convex function associated with an arbitrary isometry, rather than just the right-shift operator.

Outline

(1) What is a cycle for a composition of proximal mappings?

2 Classical cylcles and gap vectors via the Attouch-Théra duality
(3) Imagination: phantom cycle and gap vectors

4 Examples
(5) Simons: mth roots of identity operator and an average operator
(6) Characterizations of classical cycle and gap vectors
(7) Phantom cycle and gap vectors for arbitrary isometry R
(8) Conclusions

Outline

(1) What is a cycle for a composition of proximal mappings?
(2) Classical cylcles and gap vectors via the Attouch-Théra duality
(3) Imagination: phantom cycle and gap vectors
(4) Examples
(5) Simons: mth roots of identity operator and an average operator
(- Characterizations of classical cycle and gap veciors
(7) Phantom cycle and gap vectors for arbitrary isometry R
(3) Conciusions

Setup

X is a real Hilbert space with inner product $\langle\cdot, \cdot\rangle: X \times X \rightarrow[0,+\infty[$ and induced norm $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$.
The set of proper lower semicontinuous convex functions from X to $(-\infty,+\infty]$ is denoted by $\Gamma_{0}(X)$.

In the product space $\mathbf{X}=X^{m}$ with $m \in \mathbb{N}$, we let

$$
\Delta=\{(x, \ldots, x) \mid x \in X\}
$$

$$
\mathbf{R}: \mathbf{X} \rightarrow \mathbf{X}:\left(x_{1}, x_{2}, \ldots, x_{m}\right) \mapsto\left(x_{m}, x_{1}, \ldots, x_{m-1}\right), \text { and }
$$

$$
\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}=\sqrt{\left\|x_{1}\right\|^{2}+\cdots+\left\|x_{m}\right\|^{2}}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. For a finite family of functions $\left(f_{i}\right)_{i=1}^{m}$ in $\Gamma_{0}(X)$, define its separable sum by

$$
\begin{equation*}
\left.\left.\mathbf{f}=f_{1} \oplus \cdots \oplus f_{m}: \mathbf{X} \rightarrow\right]-\infty,+\infty\right]:\left(x_{1}, \ldots, x_{m}\right) \mapsto \sum_{i=1}^{m} f_{i}\left(x_{i}\right) \tag{1}
\end{equation*}
$$

The proximal mapping of f_{i} is defined by prox $f_{i}=\left(\mathrm{Id}+\partial f_{i}\right)^{-1}$ where ∂f_{i} denotes the subdifferential of f_{i}.

A cycle of \mathbf{f} is a vector $\mathbf{z}=\left(z_{1}, \ldots, z_{m}\right) \in \mathbf{X}$ such that

$$
\begin{align*}
z_{1} & =\operatorname{prox}_{f_{1}} z_{m}, \quad z_{2}=\operatorname{prox}_{f_{2}} z_{1}, \quad z_{3}=\operatorname{prox}_{f_{3}} z_{2}, \cdots, \tag{2}\\
z_{m-1} & =\operatorname{prox}_{f_{m-1}} z_{m-2}, \quad z_{m}=\operatorname{prox}_{f_{m}} z_{m-1} \tag{3}
\end{align*}
$$

The set of all cycles of \mathbf{f} will be denoted by \mathbf{Z}.
In the frame work of product space \mathbf{X}, with $\mathbf{z}=\left(z_{1}, \ldots, z_{m}\right)$, the operator form of (2)-(3) is

$$
\begin{equation*}
\mathbf{z}=\text { prox }_{\mathbf{f}} \mathbf{R z} \text {, equivalently } \tag{4}
\end{equation*}
$$

in terms of monotone operators

$$
\begin{equation*}
0 \in \partial \mathbf{f}(\mathbf{z})+\mathbf{z}-\mathbf{R z}, \tag{5}
\end{equation*}
$$

where the displacement mapping Id $-\mathbf{R}$ is maximally monotone but not a gradient of convex function unless $m=2$.

Notation

The Fenchel conjugate of f is

$$
f^{*}: X \rightarrow[-\infty,+\infty]: x^{*} \mapsto \sup _{x \in X}\left(\left\langle x, x^{*}\right\rangle-f(x)\right) .
$$

The infimal convolution of f, g is

$$
f \square g: X \rightarrow[-\infty,+\infty]: x \mapsto \inf _{y \in X}(f(y)+g(x-y)),
$$

and it is exact at a point $x \in X$ if $(\exists y \in X)(f \square g)(x)=f(y)+g(x-y) ; f \square g$ is exact if it is exact at every point of its domain.

The subdifferential of f is the set-valued operator

$$
\partial f: X \rightrightarrows X: x \mapsto\left\{x^{*} \in X \mid(\forall y \in X) f(y) \geq f(x)+\langle u, y-x\rangle\right\} .
$$

We use cl f for the lower semicontinuous hull of f.

For a set $C \subset X$, its indicator function is defined by

$$
\iota_{C}(x)= \begin{cases}0, & \text { if } x \in C \\ +\infty, & \text { if } x \notin C\end{cases}
$$

When the set C is nonempty closed convex, we write $P_{C}=$ prox $_{{ }^{C}}$ for the projection operator and $N_{C}=\partial \iota_{C}$ for the normal cone.

Let Id : $X \rightarrow X$ be the identity operator. An operator $N: X \rightarrow X$ is
(1) nonexpansive if $(\forall x, y \in X)\|N x-N y\| \leq\|x-y\|$;
(2) firmly nonexpansive if 2 N - Id is nonexpansive;
(3) β-cocercive if βN is firmly nonexpansive for some $\beta \in] 0,+\infty[$.

Prime examples of firmly nonexpansive mappings are proximal mappings of convex functions.

As usual, Fix $N=\{x \in X \mid N x=x\}$ denotes the set of fixed points of N.
For a monotone operator $A: X \rightrightarrows X$, we write $\widetilde{A}=(-\mathrm{Id}) \circ A^{-1} \circ(-\mathrm{Id})$.

Blanket assumptions

Recall the diagonal set in X^{m} by

$$
\Delta=\{(x, \ldots, x) \mid x \in X\}
$$

Throughout, we shall assume that
(1) $\left(f_{i}\right)_{i=1}^{m}$ are in $\Gamma_{0}(X)$, and \mathbf{f} is given by (1).
(2)

$$
\begin{equation*}
\operatorname{dom}\left(\mathbf{f}^{*}+\iota_{\Delta}^{*}\right)=\operatorname{dom}\left(\mathbf{f}^{*}+\iota_{\Delta^{\perp}}\right) \neq \varnothing, \tag{6}
\end{equation*}
$$

equivalently, $\operatorname{dom} \mathbf{f}^{*} \cap \Delta^{\perp} \neq \varnothing$. This will assure that $\mathbf{f} \square \iota_{\Delta}$ is proper convex, and possess a continuous minorant.

Some facts

The key tool we shall use is the following Attouch-Théra duality.

Fact 1 (Attouch-Théra duality [3])

Let $A, B: X \rightrightarrows X$ be maximally monotone operators. Let S be the solution set of the primal problem

$$
\begin{equation*}
\text { find } x \in X \text { such that } 0 \in A x+B x \tag{7}
\end{equation*}
$$

Let S^{*} be the solution set of the dual problem

$$
\begin{equation*}
\text { find } x^{*} \in X \text { such that } 0 \in A^{-1} x^{*}+\widetilde{B}\left(x^{*}\right) . \tag{8}
\end{equation*}
$$

Then
(1) $S=\left\{x \in X \mid\left(\exists x^{*} \in S^{*}\right) x^{*} \in A x\right.$ and $\left.-x^{*} \in B x\right\}$.
(2) $S^{*}=\left\{x^{*} \in X \mid(\exists x \in S) x \in A^{-1} x^{*}\right.$ and $\left.-x \in \widetilde{B}\left(x^{*}\right)\right\}$.

Important properties of the circular right shift operator come as follows.

Fact 2

For the circular right shift operator \mathbf{R}, the following hold:
(1) Id $-\mathbf{R}$ is maximally monotone.
(2) $(\mathrm{Id}-\mathbf{R})^{-1}=\frac{1}{2} \operatorname{ld}+N_{\Delta^{\perp}}+T$ where $T: \mathbf{X} \rightarrow \mathbf{X}$ is a skew operator defined by

$$
T=\frac{1}{2 m} \sum_{k=1}^{m-1}(m-2 k) \mathbf{R}^{k} .
$$

In particular, $\operatorname{dom}(\operatorname{ld}-\mathbf{R})^{-1}=\Delta^{\perp}$.
(3) $\left(\frac{1}{2} \operatorname{ld}+T\right)^{-1}=\operatorname{ld}-\mathbf{R}+2 P_{\Delta}$.

Lemma 3

Let $f: X \rightarrow]-\infty,+\infty]$ be proper and convex, and $x \in X$. Then the following hold:
(1) If $\partial f(x) \neq \varnothing$, then f is lower semicontinuous at x.
(2) If $f(x)=\mathrm{cl} f(x)$, that is, f is lower semicontinuous at x, then $\partial f(x)=\partial \mathrm{cl} f(x)$.
(3) In general, $\partial f \subseteq \partial \mathrm{cl} f$.

Lemma 4

Let $f, g \in \Gamma_{0}(X)$ and $x, y \in X$. Then the following hold:
(1) If $(f \square g)(x)=f(y)+g(x-y)$, then $\partial(f \square g)(x)=\partial f(y) \cap \partial g(x-y)$.
(2) If $\partial f(y) \cap \partial g(x-y) \neq \varnothing$, then $(f \square g)(x)=f(y)+g(x-y)$ and

$$
\partial(f \square g)(x)=\partial f(y) \cap \partial g(x-y)
$$

(3) In general, $\partial(f \square g)(x) \supseteq \partial f(y) \cap \partial g(x-y)$.

Fact 5

Suppose that $S=\bigcap_{i=1}^{m} \operatorname{argmin} f_{i} \neq \varnothing$. Then

$$
\mathbf{Z}=\{(z, \ldots, z) \mid z \in S\} .
$$

Outline

(1) What is a cycle for a composition of proximal mappings?
(2) Classical cylcles and gap vectors via the Attouch-Théra duality
(3) Imagination: phantom cycle and gap vectors

4 Examples
(3) Simons: mth roots of identity operator and an average operator
(6) Characterizations of classical cycle and gap vectors
(7) Phantom cycle and gap vectors for arbitrary isometry R
(8) Conclusions

Using the Attouch-Théra duality with $A=\partial \mathbf{f}$ and $B=\mathrm{Id}-\mathbf{R}$, and the identity

$$
-\mathrm{Id} \circ(\mathrm{Id}-\mathbf{R})^{-1} \circ(-\mathrm{Id})=(\mathrm{Id}-\mathbf{R})^{-1}
$$

for linear relation $(\mathrm{Id}-\mathbf{R})^{-1}$, we can formulate the primal-dual inclusion problem:

$$
\begin{array}{ll}
(P) & 0 \in \partial \mathbf{f}(\mathbf{x})+(\mathrm{ld}-\mathbf{R}) \mathbf{x} \\
(D) & 0 \in(\partial \mathbf{f})^{-1}(\mathbf{y})+(\mathrm{Id}-\mathbf{R})^{-1} \mathbf{y} \tag{10}
\end{array}
$$

Theorem 6

The solution set of (D) is at most a singleton (possibly empty).

Proof.

Since $(\mathrm{Id}-\mathbf{R})^{-1}=\frac{1}{2} \mathrm{Id}+N_{\Delta^{\perp}}+T$ by Fact 2, the monotone operator

$$
\partial \mathbf{f}^{-1}+(\mathrm{Id}-\mathbf{R})^{-1}=\frac{1}{2} \mathrm{Id}+\left(N_{\Delta^{\perp}}+T+\partial \mathbf{f}^{-1}\right)
$$

is strongly monotone, so $\left[\partial \mathbf{f}^{-1}+(\mathrm{Id}-\mathbf{R})^{-1}\right]^{-1}(0)$ is at most a singleton.

Theorem 7

Consider the sets of classical cycles and classical gap vectors defined respectively by

$$
\begin{align*}
& \mathbf{Z}=\{\mathbf{x} \in \mathbf{X} \mid 0 \in \partial \mathbf{f}(\mathbf{x})+(\mathrm{ld}-\mathbf{R}) \mathbf{x}\} \tag{11}\\
& \mathbf{G}=\left\{\mathbf{y} \in \mathbf{X} \mid 0 \in(\partial \mathbf{f})^{-1}(\mathbf{y})+(\mathrm{ld}-\mathbf{R})^{-1} \mathbf{y}\right\} \tag{12}
\end{align*}
$$

We have
(1) $\mathbf{Z}=\bigcup_{\mathbf{y} \in \mathbf{G}}(\mathrm{Id}-\mathbf{R})^{-1}(-\mathbf{y}) \cap(\partial \mathbf{f})^{-1}(\mathbf{y})$.
(2) $\mathbf{G}=\bigcup\{\mathbf{R} \mathbf{x}-\mathbf{x} \mid \mathbf{x} \in \mathbf{Z}\}$. If $\mathbf{G} \neq \varnothing$, then \mathbf{G} is a singleton $\mathbf{y} \in \Delta^{\perp}$ and $\mathbf{y}=\mathbf{R x}-\mathbf{x}$ for every $\mathbf{x} \in \mathbf{Z}$.

Outline

(1) What is a cycle for a composition of proximal mappings?
(2) Classical cylcies and gap vectors via the Attouch-Théra duality
(3) Imagination: phantom cycle and gap vectors
(4) Examples
(5) Simons: mth roots of identity operator and an average operator
(-) Characterizations of classical cycle and gap vectors
(7) Phantom cycle and gap vectors for arbitrary isometry R
(3) Conclusions

Extending the dual approach

Since the linear relation $(\mathrm{ld}-\mathbf{R})^{-1}=\frac{1}{2} \mathrm{ld}+N_{\Delta^{\perp}}+T$ by Fact 2, and $\partial \iota_{\Delta}^{*}=\partial \iota_{\Delta^{\perp}}=N_{\Delta^{\perp}}$, we have

$$
\begin{align*}
\partial \mathbf{f}^{-1}+(\mathrm{Id}-\mathbf{R})^{-1} & =\partial \mathbf{f}^{*}+\frac{1}{2} \mathrm{Id}+T+\partial \iota_{\Delta}^{*}=\partial \mathbf{f}^{*}+\partial \iota_{\Delta}^{*}+\frac{1}{2} \mathrm{Id}+T \tag{13}\\
& \subseteq \partial\left(\mathbf{f}^{*}+\iota_{\Delta}^{*}\right)+\frac{1}{2} \mathrm{Id}+T \tag{14}\\
& =\frac{1}{2}\left[\operatorname{Id}+\left(2 T+2 \partial\left(\mathbf{f}^{*}+\iota_{\Delta}^{*}\right)\right)\right] . \tag{15}
\end{align*}
$$

The enlarged dual

$$
\begin{equation*}
\text { (} \tilde{D}) \quad 0 \in \partial\left(\mathbf{f}^{*}+\iota_{\Delta}^{*}\right)(\mathbf{y})+\frac{1}{2} \mathbf{y}+T \mathbf{y} \tag{16}
\end{equation*}
$$

always has a unique solution. We call the \mathbf{y} given by (16) as the phantom gap vector of $\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)$.

Extending the primal approach

One can also start from the primal

$$
(P) \quad 0 \in \partial \mathbf{f}(\mathbf{u})+(\mathrm{ld}-\mathbf{R}) \mathbf{u} .
$$

Because $\partial \mathbf{f}+(\mathrm{Id}-\mathbf{R})$ is already maximally monotone by [4], one cannot do enlargements so that (P) has a solution. We need to rewrite it in an equivalent form. In view of

$$
-(\operatorname{ld}-\mathbf{R}) \mathbf{u} \in \partial \mathbf{f}(\mathbf{u}), \quad-(\operatorname{ld}-\mathbf{R}) \mathbf{u} \in \Delta^{\perp}
$$

Lemmas 4 and 3, we have

$$
\begin{align*}
-(\mathrm{ld}-\mathbf{R}) \mathbf{u} & \in \partial \mathbf{f}(\mathbf{u}) \cap \Delta^{\perp} \tag{17}\\
& =\partial \mathbf{f}(\mathbf{u}) \cap \partial \iota_{\Delta}(\mathbf{d}) \subseteq \partial\left(\mathbf{f} \square \iota_{\Delta}\right)(\mathbf{u}+\mathbf{d}) \tag{18}\\
& \subseteq \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{u}+\mathbf{d}), \tag{19}
\end{align*}
$$

where $\mathbf{d} \in \Delta$.

Because $(\mathrm{Id}-\mathbf{R})(\mathbf{d})=0$, we can write equations (17)-(19) as

$$
0 \in \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{u}+\mathbf{d})+(\mathrm{ld}-\mathbf{R})(\mathbf{u}+\mathbf{d}) .
$$

With

$$
\mathbf{d}=\left(-\sum_{i=1}^{m} u_{i} / m, \ldots,-\sum_{i=1}^{m} u_{i} / m\right) \in \Delta
$$

and

$$
\mathbf{x}=\mathbf{u}+\mathbf{d} \in \Delta^{\perp}
$$

we have

$$
\begin{equation*}
0 \in \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{x})+(\mathrm{ld}-\mathbf{R})(\mathbf{x}), \text { and } \mathbf{x} \in \Delta^{\perp} . \tag{20}
\end{equation*}
$$

The solution \mathbf{x} given by (20) is called a phantom cycle of $\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)$.

The primal－dual approach

The phantom cycle and gap vectors of $\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)$ can be put into the frame work of the Attouch－Théra duality．

Theorem 8

Consider the following Attouch－Théra primal－dual problems

$$
\begin{align*}
& \text { (⿱丷天) } \quad 0 \in \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{x})+(\mathrm{Id}-\mathbf{R}) \mathbf{x} \text { and } \mathbf{x} \in \Delta^{\perp}, \tag{21}\\
& (\tilde{D}) \quad 0 \in \partial\left(\mathbf{f}^{*}+\iota_{\Delta}^{*}\right)(\mathbf{y})+\frac{1}{2} \mathbf{y}+T \mathbf{y} . \tag{22}
\end{align*}
$$

Then the following hold：
（1）（ $\tilde{D})$ is the Attouch－Théra dual of (\tilde{P}) ，and（ $\tilde{D})$ has a unique solution．
（2）（ $\tilde{P})$ has a unique solution．

Lemma 9

We have $\operatorname{ran} \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right] \subseteq \Delta^{\perp}$.

- For $A: X \rightrightarrows X$, ran A denotes the range of A.

Proof.

(1): Let us consider the Attouch-Théra dual of (\tilde{D}). As $\left(\mathbf{f}^{*}+\iota_{\Delta}^{*}\right)^{*}=\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)$, we have

$$
\begin{equation*}
0 \in \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{x})+\left(\frac{1}{2} \mathrm{ld}+T\right)^{-1}(\mathbf{x}) . \tag{23}
\end{equation*}
$$

Since $\left(\frac{1}{2} \mathrm{ld}+T\right)^{-1}=\mathrm{Id}-\mathbf{R}+2 P_{\Delta}$ by Fact 23 , we obtain

$$
0 \in \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{x})+(\mathrm{ld}-\mathbf{R}) \mathbf{x}+2 P_{\Delta}(\mathbf{x}) .
$$

Because $\operatorname{ran}(\mathrm{Id}-\mathbf{R}) \subseteq \Delta^{\perp}$, and Lemma 9, the above implies

$$
-2 P_{\Delta}(\mathbf{x}) \in \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{x})+(\mathrm{ld}-\mathbf{R}) \mathbf{x}
$$

from which $2 P_{\Delta}(\mathbf{x}) \in \Delta \cap \Delta^{\perp}$, so $P_{\Delta}(\mathbf{x})=0$, and $\mathbf{x} \in \Delta^{\perp}$. Hence, (23) is equivalent to

$$
\begin{equation*}
0 \in \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{x})+(\mathrm{ld}-\mathbf{R}) \mathbf{x}, \text { and } \mathbf{x} \in \Delta^{\perp}, \tag{24}
\end{equation*}
$$

which is precisely (21).
(\tilde{D}) has a unique solution by Theorem 6 .

Recovering the classical cycle from the phantom cycle under ...

Theorem 10

Let \mathbf{x} be a phantom cycle of $\mathrm{cl}(\mathbf{f} \square \iota \Delta)$, i.e.,

$$
\text { (} \tilde{P}) \quad 0 \in \partial\left[\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{x})+(\mathrm{Id}-\mathbf{R}) \mathbf{x}, \text { and } \mathbf{x} \in \Delta^{\perp} \text {. }
$$

If

$$
\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)(\mathbf{x})=\left(\mathbf{f} \square \iota_{\Delta}\right)(\mathbf{x}) \text {, and } \mathbf{f} \square \iota_{\Delta} \text { is exact at } \mathbf{x} \text {, }
$$

then $\mathbf{x}=\mathbf{u}+\mathbf{v}, \mathbf{v}=\left(-\sum_{i=1}^{m} u_{i} / m, \ldots,-\sum_{i=1}^{m} u_{i} / m\right) \in \Delta$, and

$$
0 \in \partial \mathbf{f}(\mathbf{u})+(\operatorname{ld}-\mathbf{R}) \mathbf{u} .
$$

Consequently, u is a classical cycle for \mathbf{f}.

Classical cycles become the phantom cycle under a shift

Theorem 11

Let $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)$ with $u_{i} \in X$ for $i=1, \ldots, m$, and let \mathbf{u} be a classical cycle for f, i.e.,

$$
\begin{equation*}
0 \in \partial \mathbf{f}(\mathbf{u})+(\operatorname{ld}-\mathbf{R}) \mathbf{u} . \tag{25}
\end{equation*}
$$

Set $\mathbf{v}=\left(-\sum_{i=1}^{m} u_{i} / m, \ldots,-\sum_{i=1}^{m} u_{i} / m\right) \in \Delta$ and $\mathbf{x}=\mathbf{u}+\mathbf{v}$. Then
(1) $f \square \iota_{\Delta}$ is lower semicontinuous and exact at \mathbf{x}.
(2) $\mathbf{x} \in \Delta^{\perp}$ and \mathbf{x} solves

$$
\begin{equation*}
\text { (} \tilde{P}) \quad 0 \in \partial\left(\mathbf{f} \square \iota_{\Delta}\right)(\mathbf{x})+(\mathrm{Id}-\mathbf{R}) \mathbf{x}=\partial\left[\mathrm{c} \mid\left(\mathbf{f} \square \iota_{\Delta}\right)\right](\mathbf{x})+(\mathrm{ld}-\mathbf{R}) \mathbf{x} . \tag{26}
\end{equation*}
$$

Consequently, \mathbf{x} is a phantom cycle for $\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)$.

The following result summarizes the relationship among the classical cycles, phantom cycle and gap vectors.

Corollary 12
With \mathbf{x} and \mathbf{y} given in Theorem 8, the following hold:
(1) $x, y \in \Delta^{\perp}$.
(2) $\mathbf{y}=\mathbf{R x}-\mathbf{x}$.
(3) $\mathbf{x}=-\frac{y}{2}-T y$.
(9) $\mathbf{Z}=(\mathbf{x}+\Delta) \cap(\partial \mathbf{f})^{-1}(\mathbf{R} \mathbf{x}-\mathbf{x})=(\mathrm{Id}-\mathbf{R})^{-1}(-\mathbf{y}) \cap(\partial f)^{-1}(\mathbf{y})$.
(5) $\mathbf{Z} \subseteq\left(F_{1} \times \cdots \times F_{m}\right) \cap(\operatorname{ld}-\mathbf{R})^{-1}(-\mathbf{y})$.

Characterization of $\mathbf{Z} \neq \varnothing$ via phantom cycles

Recall the parallel sum $(\forall x \in X)(\partial f \square \partial g)(x)=\bigcup_{x=u+v} \partial f(u) \cap \partial g(v)$.
Corollary 13
Let \mathbf{x} by given in Theorem 8. Then the following are equivalent:
(1) $\mathbf{Z} \neq \varnothing$.
(2) $\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)(\mathbf{x})=\left(\mathbf{f} \square \iota_{\Delta}\right)(\mathbf{x})$ and $\mathbf{f} \square \iota_{\Delta}$ is exact at \mathbf{x}.
(3) $\left(\partial \mathbf{f} \square \partial \iota_{\Delta}\right)(\mathbf{x}) \neq \varnothing$.

Outline

(1) What is a cycle for a composition of proximal mappings?
(2) Classical cylcles and gap vectors via the Attouch-Théra duality
(3) Imagination: phantom cycle and gap vectors

(4) Examples

(5) Simons: mth roots of identity operator and an average operator
(6) Characterizations of classical cycle and gap vectors
(7) Phantom cycle and gap vectors for arbitrary isometry R
(8) Conclusions

For $C_{i} \subseteq X, i=1, \ldots, m$, we let

$$
\mathbf{C}=C_{1} \times \cdots \times C_{m} \subseteq \mathbf{X}
$$

The first example illustrates the concepts of generalized cycles and gap vectors when the classical ones do not exist.

Example 14

Let $\alpha \geq 0$. Consider

$$
C_{1}=\operatorname{epi} \exp =\{(x, r) \mid r \geq \exp (-x)+\alpha \text { and } x \in \mathbb{R}\}, \text { and } C_{2}=\mathbb{R} \times\{0\} .
$$

Then
(1) ıc has neither a cycle nor a gap vector.
(2) $\mathrm{cl}\left(\iota_{\mathbf{C}} \square \iota_{\Delta}\right)=\iota \overline{\mathbf{C}+\Delta}$ has both a generalized cycle and a generalized gap vector, namely $\mathbf{x}=(0, \alpha / 2,0,-\alpha / 2), \mathbf{y}=(0,-\alpha, 0, \alpha) \in \mathbb{R}^{4}$.

The second example characterizes when the set of cycles is a singleton or infinite for a finite number of lines in a Hilbert space.

Example 15

Given m sets in $X: C_{i}=\left\{a_{i}+t_{i} b_{i} \mid t_{i} \in \mathbb{R}\right\}$ where $a_{i} \in X$ and $b_{i} \in X \backslash\{0\}$ for $i=1, \ldots, m$. Then the following hold:
(1) ιc always has a classical cycle, i.e., $\mathbf{Z} \neq \varnothing$.
(2) ι_{c} has a unique classical cycle if and only if the set of vectors $\left\{b_{i} \mid i=1, \ldots, m\right\}$ is not parallel.
(3) ıc has infinitely many classical cycles if and only if the set of vectors $\left\{b_{i} \mid i=1, \ldots, m\right\}$ is parallel.

Finding phantom cycle and gap vectors

In view of the possibility of $\mathbf{Z}=\varnothing$, one can consider the extended Attouch-Théra primal-dual:

$$
\begin{array}{ll}
\text { (EP) } & 0 \in \partial \mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)(\mathbf{x})+(\mathrm{Id}-\mathbf{R}) \mathbf{x} \\
\text { (ED) } & 0 \in \partial\left(\mathbf{f}^{*}+\iota_{\Delta}^{*}\right)(\mathbf{y})+\frac{1}{2} \mathbf{y}+T \mathbf{y} . \tag{28}
\end{array}
$$

Both (EP) and (ED) always have solutions.
While (EP) gives all generalized cycles, (ED) gives the unique generalized gap vector for $\mathrm{cl}\left(\mathbf{f} \square \iota_{\Delta}\right)$. To make the notation simple in the following proof, let us write

$$
\mathbf{g}=\operatorname{cl}\left(\mathbf{f} \square \iota_{\Delta}\right) .
$$

Theorem 16

Let $\gamma \in] 0,1\left[, \delta=2-\gamma\right.$, and let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $] 0, \delta[$ such that $\sum_{n \in \mathbb{N}} \lambda_{n}\left(\delta-\lambda_{n}\right)=+\infty$. Let $\mathbf{x}_{0} \in \mathbf{X}$ and set

$$
\begin{align*}
& \text { for } n=0,1, \ldots \\
& \qquad \begin{array}{l}
\mathbf{y}_{n}=(1-\gamma) \mathbf{x}_{n}+\gamma \mathbf{R} \mathbf{x}_{n}, \\
\mathbf{x}_{n+1}=\mathbf{x}_{n}+\lambda_{n}\left(\operatorname{prox}_{\gamma \mathbf{g}} \mathbf{y}_{n}-\mathbf{x}_{n}\right) .
\end{array} \tag{29}
\end{align*}
$$

Then the following hold:
(1) $\left(\mathbf{x}_{n}\right)_{n \in \mathbb{N}}$ converges weakly to \mathbf{x}, a generalized cycle of \mathbf{g}, i.e., a solution of ($E P$).
(2) ($\left.\mathbf{R} x_{n}-\mathbf{x}_{n}\right)_{n \in \mathbb{N}}$ converges strongly to $\mathbf{y}=\mathbf{R} \mathbf{x}-\mathbf{x}$, the unique generalized gap vector of \mathbf{g}, i.e., the solution of (ED).

Outline

(1) What is a cycle for a composition of proximal mappings?

(2) Classical cyicies and gap vectors via the Attouch-Théra duality
(3) Imagination: phantom cycle and gap vectorsExamples
(5) Simons: mth roots of identity operator and an average operator
(6) Characterizations of classical cycle and gap vectors
(7) Phantom cycle and gap vectors for arbitrary isometry R
(8) Conclusions

In 2021, Simons considered the root of identity operator: $R: X \rightarrow X$ is linear and $R^{m}=\mathrm{Id}$.

Define the average operator

$$
A=\frac{1}{m} \sum_{i=1}^{m} R^{i}, \text { and } Y=\operatorname{ker}(A)=\{y \in X \mid A y=0\}
$$

Also define $S: X \rightarrow X$ by

$$
S=R-\mathrm{Id}
$$

and $Q: X \rightarrow X$ by

$$
Q=\frac{1}{m} \sum_{i=1}^{m-1} i R^{i}
$$

and $Q_{0}=\left.Q\right|_{Y}$, the restriction of Q to Y. Linear operators A, S, Q and subspace Y are crucial in Simons' analysis [10].

Fact 17 (Simons '2021)

The following hold:
(1) $S(X) \subseteq Y$, and $Q(Y) \subseteq Y$.
(2) $(\forall y \in Y) S(Q y)=y$, and $Q(S y)=y$.
(3) $A S=S A=0$.
(4) $S Q=Q S=\mathrm{ld}-A$.
(3) $-Q_{0}-$ Id $/ 2$ is skew and so maximally monotone on Y.
(6) If R is an isometry, then $(\forall x \in X) 2\langle x, S x\rangle+\|S x\|^{2}=0$.

Example 18

A linear operator $R: X \rightarrow X$ satisfying $R^{m}=I d$ does not imply R nonexpansive. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the canonical base of the Euclidean space \mathbb{R}^{4}.
(1) Bambaii-Chowla's matrix (1946): Set

$$
B_{1}=\left(\begin{array}{cccc}
-1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Then $B_{1}^{5}=\operatorname{ld}$ but $\left\|B_{1} e_{1}\right\|=\sqrt{2}>1=\left\|e_{1}\right\|$.
(2) Set

$$
B_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & -3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Then $B_{2}^{2}=$ Id but $\left\|B_{2} e_{4}\right\|=\sqrt{20}>1=\left\|e_{4}\right\|$.
(3) Turnbull's matrix (1927): Set

$$
B_{3}=\left(\begin{array}{cccc}
-1 & 1 & -1 & 1 \\
-3 & 2 & -1 & 0 \\
-3 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

Then $B_{3}^{3}=\operatorname{ld}$ but $\left\|B_{3} e_{1}\right\|=\sqrt{20}>1=\left\|e_{1}\right\|$.

However, the following holds.
Lemma 19
Let $R: X \rightarrow X$ be linear and $R^{m}=\operatorname{ld}$ for $m \in \mathbb{N}$. Then the following are equivalent:
(1) R is nonexpansive.
(2) R is an isometry.
(3) R^{*} is nonexpansive.
(9) R^{*} is an isometry.

With Example 18 and Proposition 19 in mind, when R is an isometry we have the following new properties of A and S. We show that A is in fact a projection, and that

$$
Y=(\text { Fix } R)^{\perp}=\operatorname{ran} S
$$

whenever R is an isometry.

Theorem 20

Suppose that R is an isometry. Then the following hold:
(1) $\operatorname{ker} A=\operatorname{ker} A^{*}=(\operatorname{Fix} R)^{\perp}=\left(\text { Fix } R^{*}\right)^{\perp}$.
(2) $A=P_{\text {Fix } R}=P_{\text {Fix } R^{*}}=A^{*}$. In particular, $\operatorname{ran} A=\operatorname{ran} A^{*}=\mathrm{Fix} R$ is closed.
(3) $\operatorname{ran} S=(\text { Fix } R)^{\perp}=\operatorname{ran} S^{*}$. In particular, $\operatorname{ran} S=\operatorname{ran} S^{*}$ is closed.

Example 21

Without R being isometric, Theorem 20 fails. Take B_{2} in Example 18(ii) where $m=2$ to obtain

$$
A=\frac{1}{2}\left(B_{2}+B_{2}^{2}\right)=\left(\begin{array}{cccc}
1 & 1 / 2 & 1 / 2 & 1 / 2 \\
0 & 0 & -1 & -3 / 2 \\
0 & 0 & 1 & 3 / 2 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Because

$$
\left\|A e_{4}\right\|=\sqrt{19 / 4}>\left\|e_{4}\right\|
$$

the operator A can neither be nonexpansive nor a projection operator.

Extended Simons' lemma

We call the following result the extended Simons's lemma.

Lemma 22

Let $f \in \Gamma_{0}(X)$ with $Y \cap \operatorname{dom} f^{*} \neq \varnothing$. Then there exists a unique pair of vectors $(e, d)=\left(e_{f}, d_{f}\right) \in Y \times Y$ such that $d=S e \in \operatorname{dom} f^{*}, e=Q d$, and

$$
(\forall y \in Y) f^{*}(S e)+\langle y-S e, e\rangle-f^{*}(y) \leq 0 ;
$$

equivalently, $e \in \partial\left(f^{*}+\iota y\right)(S e)$. Consequently,

$$
(\forall x \in X) f^{*}(S e)+\langle S x-S e, e\rangle-f^{*}(S x) \leq 0 .
$$

- In [10, Lemma 16] Simons proved Lemma 22 when $f=\sigma_{C}$, a support function of a closed convex set $C \subseteq X$.

Lemma 23

Let $f \in \Gamma_{0}(X)$ with $Y \cap \operatorname{dom} f^{*} \neq \varnothing$. Then the vector $e=e_{f} \in Y$ from Lemma 22 is the unique vector satisfying

$$
\begin{align*}
& \left(f^{*}+\iota_{Y}\right)(S e)-\langle S e, e\rangle+\mathrm{cl}\left(f \square \iota_{Y \perp}\right)(e) \tag{30}\\
& =\left(f^{*}+\iota Y\right)(S e)-\langle S e, e\rangle+\left(f^{*}+\iota Y\right)^{*}(e)=0 . \tag{31}
\end{align*}
$$

Theorem 24

Let R be an isometry and $Y=(\text { Fix } R)^{\perp}$, let $f \in \Gamma_{0}(X)$ with $Y \cap \operatorname{dom} f^{*} \neq \varnothing$, and let $(e, d) \in Y \times Y$ be given by Lemma 22. Consider the Attouch-Théra primal-dual inclusion problem:

$$
\begin{array}{ll}
\text { (P) } & 0 \in \partial \mathrm{cl}\left(f \square \iota_{Y^{\perp}}\right)(x)+(\mathrm{ld}-R) x, \\
(D) & 0 \in \partial\left(f^{*}+\iota Y\right)(y)+(\mathrm{ld}-R)^{-1} y . \tag{33}
\end{array}
$$

Then the following hold:
(1) (e, d) is a solution to the primal-dual problem (32)-(33), i.e., e solves (P) and d solves (D). Moreover, d is the unique solution of (D).
(2) (e, d) is the unique solution of the primal-dual problem

$$
\begin{align*}
& \left(P^{\prime}\right) \quad 0 \in \partial \mathrm{cl}\left(f \square \iota_{Y_{\perp}}\right)(x)+(\mathrm{ld}-R) x \text { and } x \in Y, \tag{34}\\
& \left(D^{\prime}\right) \quad 0 \in \partial\left(f^{*}+\iota Y\right)(y)+(\mathrm{ld}-R)^{-1} y . \tag{35}
\end{align*}
$$

More specifically, e is the unique solution of $\left(P^{\prime}\right)$ and d is the unique solution of (D^{\prime}).

Outline

(1) What is a cycle for a composition of proximal mappings?

2 Classical cylcles and gap vectors via the Attouch-Théra duality
(3) Imagination: phantom cycle and gap vectorsExamples
(5) Simons: mth roots of identity operator and an average operator

6 Characterizations of classical cycle and gap vectors
(7) Phantom cycle and gap vectors for arbitrary isometry R
(8) Conclusions

Theorem 25

Let $f \in \Gamma_{0}(X)$ with $Y \cap \operatorname{dom} f^{*} \neq \varnothing$ and let $(e, d) \in Y \times Y$ be given by Lemma 22. Then the following statements are equivalent for every $z \in X$:
(1) $z=\operatorname{prox}_{f} R z$.
(2) $f^{*}(S z)+f(z)+\frac{1}{2}\|S z\|^{2}=0$.
(3) $S z=d$ and $f(z)=c l\left(f \square \iota \zeta_{\perp}\right)(e)$.
(4) $S z=d$ and $f(z)=c l\left(f \square \iota_{\gamma \perp}\right)(z)$.

Proof of Theorem 25 I

$$
\text { (1) } \Leftrightarrow \text { (2): } z=\operatorname{prox}_{f} R z \Leftrightarrow R z \in z+\partial f(z) \Leftrightarrow S z \in \partial f(z) \Leftrightarrow
$$

$$
f^{*}(S z)+f(z)=\langle z, S z\rangle=-\frac{1}{2}\|S z\|^{2} .
$$

(2) \Rightarrow (3): $\mathrm{By}(2)$,

$$
\begin{equation*}
f^{*}(S z)+f(z)+\frac{1}{2}\|S z\|^{2}=0 . \tag{36}
\end{equation*}
$$

By Lemma 22,

$$
f^{*}(S e)+\langle S z-S e, e\rangle-f^{*}(S z) \leq 0
$$

Adding above two equations yields

$$
f^{*}(S e)+f(z)+\langle S z-S e, e\rangle+\frac{1}{2}\|S z\|^{2} \leq 0 .
$$

Since

$$
f^{*}(S e)+f(z) \geq\langle S e, z\rangle,
$$

Proof of Theorem 25 II

by the Fenchel-Young inequality, and

$$
\frac{1}{2}\|S z\|^{2}=-\langle S z, z\rangle
$$

we have

$$
\langle S e, z\rangle+\langle S z-S e, e\rangle-\langle S z, z\rangle \leq 0,
$$

from which

$$
-\langle S(z-e), z-e\rangle=-\langle S z-S e, z-e\rangle \leq 0
$$

Then $\frac{1}{2}\|S(z-e)\|^{2} \leq 0$, so $S z=S e=d$. Also, by Lemma 23 and $\langle S e, e\rangle=-\frac{1}{2}\|S e\|^{2}=-\frac{1}{2}\|S z\|^{2}$, we obtain

$$
\begin{equation*}
f^{*}(S z)+\frac{1}{2}\|S z\|^{2}+\operatorname{cl}\left(f \square \iota_{\curlyvee \perp}\right)(e)=0 . \tag{37}
\end{equation*}
$$

Combining (36) and (37) gives $f(z)=\operatorname{cl}\left(f \square \iota_{Y \perp}\right)(e)$. (3) \Rightarrow (2):

Proof of Theorem 25 III

Now (3) ensures $S z=d=S e$ and $c l\left(f \square \iota \zeta_{\perp}\right)(e)=f(z)$. Also

$$
\langle S e, e\rangle=-\frac{1}{2}\|S e\|^{2}=-\frac{1}{2}\|S z\|^{2}
$$

Then (30) in Lemma 23 gives

$$
f^{*}(S z)+\frac{1}{2}\|S z\|^{2}+f(z)=0
$$

which is (2).
(3) \Leftrightarrow (4): Assume that $S z=d=S e$. Then $z-e \in S^{-1}(0)=$ Fix R. Since $\mathrm{cl}\left(f \square \iota_{Y_{\perp}}\right)$ is translation-invariant with respect to $Y^{\perp}=\mathrm{Fix} R$, we have

$$
\mathrm{cl}\left(f \square \iota_{Y \perp}\right)(z)=\mathrm{cl}\left(f \square \iota_{Y \perp}\right)(e) .
$$

When does

$$
f(z)=\mathrm{cl}\left(f \square \iota_{Y \perp}\right)(e)
$$

or

$$
f(z)=\mathrm{cl}\left(f \square \iota_{\gamma^{\perp}}\right)(z) ?
$$

Translation-invariant functions

Definition 26

We say that $f: X \rightarrow]-\infty,+\infty]$ is translation-invariant with respect to a subset C of X if $f(x+c)=f(x)$ for every $x \in X$ and $c \in C$.

Lemma 27

Let $f \in \Gamma_{0}(X)$ and let C be a closed linear subspace of X. If f is translation-invariant with respect to C, then $\operatorname{dom} f^{*} \subseteq C^{\perp}$ and

$$
\left(f^{*}+\iota_{C^{\perp}}\right)^{*}=\mathrm{cl}\left(f \square \iota_{C}\right)=f \square \iota_{C}=f .
$$

Theorem 28

Let $f \in \Gamma_{0}(X)$ be translation-invariant with respect to Fix R and such that $Y \cap \operatorname{dom} f^{*} \neq \varnothing$ where $Y=(\text { Fix } R)^{\perp}$. Let $d \in Y$ be given by Lemma 22. Then the following statements are equivalent for every $z \in X$:
(1) $z=\operatorname{prox}_{f} R z$.
(2) $f^{*}(S z)+f(z)+\frac{1}{2}\|S z\|^{2}=0$.
(3) $S z=d$.

Minimizers of f

Lemma 29

Let $f \in \Gamma_{0}(X)$ with $Y \cap \operatorname{dom} f^{*} \neq \varnothing$ and let $(e, d) \in Y \times Y$ be given by Lemma 22. Suppose in addition that $S z=d$ and $z \in \operatorname{argmin} f$. Then

$$
\begin{gather*}
z=\operatorname{prox}_{f} R z, \text { and } \tag{38}\\
\mathrm{cl}\left(f \square \iota_{Y \perp}\right)(e)=\mathrm{cl}\left(f \square \iota_{Y \perp}\right)(z)=\operatorname{mincl}\left(f \square \iota_{Y \perp}\right)=f(z) . \tag{39}
\end{gather*}
$$

Theorem 30

Let $f \in \Gamma_{0}(X)$ with $Y \cap \operatorname{dom} f^{*} \neq \varnothing$ and let $d \in Y$ be given by Lemma 22. Then the following statements are equivalent for every $z \in \operatorname{argmin} f$:
(1) $z=\operatorname{prox}_{f} R z$.
(2) $f^{*}(S z)+\frac{1}{2}\|S z\|^{2}+f(z)=0$.
(3) $S z=d$.

Immediately we obtain the following result of Simons [10, Theorem 7].

Corollary 31

Let C be a nonempty closed convex subset of X. Let $d \in Y$ be given by Lemma 22 with $f=\iota_{c}$. Then the following statements are equivalent for every $z \in C$:
(1) $z=P_{C} R z$.
(2) $\sigma_{C}(S z)+\frac{1}{2}\|S z\|^{2}=0$.
(3) $S z=d$.

Outline

(1)

What is a cycle for a composition of proximal mappings?

(2) Classical cylcles and gap vectors via the Attouch-Théra duality
(3) Imagination: phantom cycle and gap vectorsExamples
(5) Simons: mth roots of identity operator and an average operator
(6) Characterizations of classical cycle and gap vectors
(7) Phantom cycle and gap vectors for arbitrary isometry R
(8) Conclusions

The next result makes it clear that the classical cycles and gap vector of a function f are closely related to those of $\mathrm{cl}\left(f \square \iota_{\curlyvee \perp}\right)$ and to which we refer as phantom cycles and phantom gap vector.

Theorem 32

Let $f \in \Gamma_{0}(X)$ with $Y \cap \operatorname{dom} f^{*} \neq \varnothing$ and let $(e, d)=\left(e_{f}, d_{f}\right)$ be given by Lemma 22. Then the following hold:
(1) The set Z of phantom cycles of f, which are defined to be the set of classical cycles of the function cl(f $\left.\square \iota_{\curlyvee \perp}\right)$, i.e.,
$Z=\left\{z \in X \mid z=\operatorname{prox}_{\mathrm{cl}\left(f \square \iota_{Y \perp}\right)}(R z)\right\}$, is always nonempty and
$Z=e+Y^{\perp}$. Consequently, Z contains infinitely many elements whenever $Y^{\perp}=$ Fix $R \neq\{0\}$.
(2) The phantom gap vector of f, i.e., the gap vector $d_{\mathrm{cl}\left(f \square \iota_{Y \perp}\right)}$, is equal to $d=S z \in Y$ for every $z \in Z$; moreover, $e_{\subset 1\left(f \square \iota_{\gamma \perp}\right)}=e$.

Outline

(1) What is a cycle for a composition of proximal mappings?
2. Classical cylcies and gap vectors via the Attouch-Théra duality
(3) Imagination: phantom cycle and gap vectors
(4) Examples
(5) Simons: mth roots of identity operator and an average operator
(-) Characterizations of classical cycle and gap vectors
(7) Phantom cycle and gap vectors for arbitrary isometry R
(8) Conclusions

Conclusions

(1) The Attouch-Théra duality provide a unified framework for studying cycles and gap vectors;

Conclusions

(1) The Attouch-Théra duality provide a unified framework for studying cycles and gap vectors;
(2) To define phantom cycles and gap vectors, one has to use cl(faı);

Conclusions

(1) The Attouch-Théra duality provide a unified framework for studying cycles and gap vectors;
(2) To define phantom cycles and gap vectors, one has to use cl(f $\left.\square \iota_{\Delta}\right)$;
(3) The forward-backward algorithms can be used to compute the phantom cycles and gap vectors;

Conclusions

(1) The Attouch-Théra duality provide a unified framework for studying cycles and gap vectors;
(2) To define phantom cycles and gap vectors, one has to use cl(f $\left.\square \iota_{\Delta}\right)$;
(3) The forward-backward algorithms can be used to compute the phantom cycles and gap vectors;
(9) How do we approach

$$
0 \in \mathbf{A x}+\mathbf{x}-\mathbf{R x}
$$

for a general maximally monotone operator \mathbf{A} ?

References I

[1] S. Alwadani, H.B. Bauschke, J.P. Revalski, and X. Wang, The difference vectors for convex sets and a resolution of the geometry conjecture, in press, Open Journal of Mathematical Optimization 2 (2021), article no. 5, 18 p.
[2] S. Alwadani, H.B. Bauschke, and X. Wang, Attouch-Théra duality, generalized cycles and gap vectors, SIAM Journal on Optimization 31 (2021), 1926-1946.
[3] H. Attouch and M. Théra, A general duality principle for the sum of two operators, Journal of Convex Analysis 3 (1996), 1-24.
[4] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2011.
[5] H.H. Bauschke and X. Wang, Roots of the identity operator and proximal mappings: (classical and phantom) cycles and gap vectors, to appear in Proceedings of the AMS.

References II

[6] H.H. Bauschke, P.L. Combettes, and S. Reich, The asymptotic behavior of the composition of two resolvents, Nonlinear Analysis 60 (2005), 283-301.
[7] R.E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston Journal of Mathematics 3 (1977), 459-470.
[8] P.L. Combettes and J.-C. Pesquet, Fixed point strategies in data science, IEEE Trans. Signal Process. 69 (2021), 3878-3905.
[9] R.T. Rockafellar and R. J-B Wets, Variational Analysis, Springer-Verlag, New York, 1998.
[10] S. Simons, m th roots of the identity operator and the geometry conjecture, to appear in Proceedings of the AMS.
[11] X. Wang and H.H. Bauschke, Compositions and averages of two resolvents: relative geometry of fixed points sets and a partial answer to a question by C. Byrne, Nonlinear Analysis 74 (2011), 4550-4572.

References III

Thank you!

