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Abstract

Using the Attouch-Théra Duality, we study the cycles, gap vectors of
compositions of proximal mappings.

1 Sufficient conditions are given under which the cycles and gap vectors
exist.

2 Phantom cycles and gap vectors are introduced to tackle the situations
when the classical ones do not exist.

Recently, Simons provided a lemma for a support function of a closed convex
set to study the geometry conjecture on cycles of projections. We

1 extend Simons’s lemma to closed convex functions,
2 show its connections to Attouch–Théra duality, and
3 use it to characterize classical and phantom cycles and gap vectors.

One can study phantom cycles and gap vectors of a convex function
associated with an arbitrary isometry, rather than just the right-shift operator.
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What is a cycle for a composition of proximal mappings?

Setup

X is a real Hilbert space with inner product 〈·, ·〉 : X × X → [0,+∞[ and
induced norm ‖ · ‖ =

√
〈·, ·〉.

The set of proper lower semicontinuous convex functions from X to (−∞,+∞]
is denoted by Γ0(X ).

In the product space X = X m with m ∈ N, we let

∆ =
{

(x , . . . , x) | x ∈ X
}
,

R : X→ X : (x1, x2, . . . , xm) 7→ (xm, x1, . . . , xm−1), and

‖x‖ =
√
〈x,x〉 =

√
‖x1‖2 + · · ·+ ‖xm‖2

where x = (x1, x2, . . . , xm). For a finite family of functions (fi )m
i=1 in Γ0(X ),

define its separable sum by

f = f1 ⊕ · · · ⊕ fm : X→ ]−∞,+∞] : (x1, . . . , xm) 7→
m∑

i=1

fi (xi ). (1)
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What is a cycle for a composition of proximal mappings?

The proximal mapping of fi is defined by proxfi = (Id +∂fi )−1 where ∂fi denotes
the subdifferential of fi .

A cycle of f is a vector z = (z1, . . . , zm) ∈ X such that

z1 = proxf1 zm, z2 = proxf2 z1, z3 = proxf3 z2, · · · , (2)

zm−1 = proxfm−1
zm−2, zm = proxfm zm−1. (3)

The set of all cycles of f will be denoted by Z.

In the frame work of product space X, with z = (z1, . . . , zm), the operator form
of (2)–(3) is

z = proxf Rz, equivalently, (4)

in terms of monotone operators

0 ∈ ∂f(z) + z− Rz, (5)

where the displacement mapping Id−R is maximally monotone but not a
gradient of convex function unless m = 2.
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What is a cycle for a composition of proximal mappings?

Notation

The Fenchel conjugate of f is

f ∗ : X → [−∞,+∞] : x∗ 7→ sup
x∈X

(〈x , x∗〉 − f (x)).

The infimal convolution of f ,g is

f2g : X → [−∞,+∞] : x 7→ inf
y∈X

(f (y) + g(x − y)),

and it is exact at a point x ∈ X if (∃y ∈ X ) (f2g)(x) = f (y) + g(x − y); f2g is
exact if it is exact at every point of its domain.

The subdifferential of f is the set-valued operator

∂f : X ⇒ X : x 7→
{

x∗ ∈ X | (∀y ∈ X ) f (y) ≥ f (x) + 〈u, y − x〉
}
.

We use cl f for the lower semicontinuous hull of f .
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What is a cycle for a composition of proximal mappings?

For a set C ⊂ X , its indicator function is defined by

ιC(x) =

{
0, if x ∈ C,
+∞, if x 6∈ C.

When the set C is nonempty closed convex, we write PC = proxιC
for the

projection operator and NC = ∂ιC for the normal cone.

Let Id : X → X be the identity operator. An operator N : X → X is
1 nonexpansive if (∀x , y ∈ X ) ‖Nx − Ny‖ ≤ ‖x − y‖;
2 firmly nonexpansive if 2N − Id is nonexpansive;
3 β-cocercive if βN is firmly nonexpansive for some β ∈ ]0,+∞[.

Prime examples of firmly nonexpansive mappings are proximal mappings of
convex functions.

As usual, Fix N =
{

x ∈ X | Nx = x
}

denotes the set of fixed points of N.

For a monotone operator A : X ⇒ X , we write Ã = (− Id) ◦ A−1 ◦ (− Id).
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What is a cycle for a composition of proximal mappings?

Blanket assumptions

Recall the diagonal set in X m by

∆ =
{

(x , . . . , x) | x ∈ X
}
.

Throughout, we shall assume that
1 (fi )m

i=1 are in Γ0(X ), and f is given by (1).
2

dom(f∗ + ι∗∆) = dom(f∗ + ι∆⊥) 6= ∅, (6)

equivalently, dom f∗ ∩∆⊥ 6= ∅. This will assure that f2ι∆ is proper
convex, and possess a continuous minorant.
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What is a cycle for a composition of proximal mappings?

Some facts

The key tool we shall use is the following Attouch-Théra duality.

Fact 1 (Attouch-Théra duality [3])

Let A,B : X ⇒ X be maximally monotone operators. Let S be the solution set
of the primal problem

find x ∈ X such that 0 ∈ Ax + Bx . (7)

Let S∗ be the solution set of the dual problem

find x∗ ∈ X such that 0 ∈ A−1x∗ + B̃(x∗). (8)

Then
1 S =

{
x ∈ X | (∃ x∗ ∈ S∗) x∗ ∈ Ax and − x∗ ∈ Bx

}
.

2 S∗ =
{

x∗ ∈ X | (∃ x ∈ S) x ∈ A−1x∗ and − x ∈ B̃(x∗)
}
.
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What is a cycle for a composition of proximal mappings?

Important properties of the circular right shift operator come as follows.

Fact 2

For the circular right shift operator R, the following hold:
1 Id−R is maximally monotone.
2 (Id−R)−1 = 1

2 Id +N∆⊥ + T where T : X→ X is a skew operator defined
by

T =
1

2m

m−1∑
k=1

(m − 2k)Rk .

In particular, dom(Id−R)−1 = ∆⊥.
3 ( 1

2 Id +T )−1 = Id−R + 2P∆.
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What is a cycle for a composition of proximal mappings?

Lemma 3

Let f : X → ]−∞,+∞] be proper and convex, and x ∈ X. Then the following
hold:

1 If ∂f (x) 6= ∅, then f is lower semicontinuous at x.
2 If f (x) = cl f (x), that is, f is lower semicontinuous at x, then
∂f (x) = ∂ cl f (x).

3 In general, ∂f ⊆ ∂ cl f .
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What is a cycle for a composition of proximal mappings?

Lemma 4

Let f ,g ∈ Γ0(X ) and x , y ∈ X. Then the following hold:
1 If (f2g)(x) = f (y) + g(x − y), then ∂(f2g)(x) = ∂f (y) ∩ ∂g(x − y).

2 If ∂f (y) ∩ ∂g(x − y) 6= ∅, then (f2g)(x) = f (y) + g(x − y) and

∂(f2g)(x) = ∂f (y) ∩ ∂g(x − y).

3 In general, ∂(f2g)(x) ⊇ ∂f (y) ∩ ∂g(x − y).

Fact 5

Suppose that S =
⋂m

i=1 argmin fi 6= ∅. Then

Z =
{

(z, . . . , z) | z ∈ S
}
.
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Classical cylcles and gap vectors via the Attouch-Théra duality

Using the Attouch-Théra duality with A = ∂f and B = Id−R, and the identity

− Id ◦(Id−R)−1 ◦ (− Id) = (Id−R)−1

for linear relation (Id−R)−1, we can formulate the primal-dual inclusion
problem:

(P) 0 ∈ ∂f(x) + (Id−R)x, (9)

(D) 0 ∈ (∂f)−1(y) + (Id−R)−1y. (10)
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Classical cylcles and gap vectors via the Attouch-Théra duality

Theorem 6

The solution set of (D) is at most a singleton (possibly empty).

Proof.

Since (Id−R)−1 = 1
2 Id +N∆⊥ + T by Fact 2, the monotone operator

∂f−1 + (Id−R)−1 =
1
2

Id +(N∆⊥ + T + ∂f−1)

is strongly monotone, so [∂f−1 + (Id−R)−1]−1(0) is at most a singleton.

X. Wang (UBC Okanagan) Phantom cyles and gap vectors April 4–6, 2022 16 / 63



Classical cylcles and gap vectors via the Attouch-Théra duality

Theorem 7

Consider the sets of classical cycles and classical gap vectors defined
respectively by

Z =
{

x ∈ X | 0 ∈ ∂f(x) + (Id−R)x
}
, (11)

G =
{

y ∈ X | 0 ∈ (∂f)−1(y) + (Id−R)−1y
}
. (12)

We have
1 Z =

⋃
y∈G(Id−R)−1(−y) ∩ (∂f)−1(y).

2 G =
⋃{

Rx− x | x ∈ Z
}
. If G 6= ∅, then G is a singleton y ∈ ∆⊥ and

y = Rx− x for every x ∈ Z.
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Imagination: phantom cycle and gap vectors

Extending the dual approach

Since the linear relation (Id−R)−1 = 1
2 Id +N∆⊥ + T by Fact 2, and

∂ι∗∆ = ∂ι∆⊥ = N∆⊥ , we have

∂f−1 + (Id−R)−1 = ∂f∗ +
1
2

Id +T + ∂ι∗∆ = ∂f∗ + ∂ι∗∆ +
1
2

Id +T (13)

⊆ ∂(f∗ + ι∗∆) +
1
2

Id +T (14)

=
1
2
[

Id +
(
2T + 2∂(f∗ + ι∗∆)

)]
. (15)

The enlarged dual

(D̃) 0 ∈ ∂(f∗ + ι∗∆)(y) +
1
2

y + T y (16)

always has a unique solution. We call the y given by (16) as the phantom gap
vector of cl(f2ι∆).
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Imagination: phantom cycle and gap vectors

Extending the primal approach

One can also start from the primal

(P) 0 ∈ ∂f(u) + (Id−R)u.

Because ∂f + (Id−R) is already maximally monotone by [4], one cannot do
enlargements so that (P) has a solution. We need to rewrite it in an equivalent
form. In view of

−(Id−R)u ∈ ∂f(u), −(Id−R)u ∈ ∆⊥,

Lemmas 4 and 3, we have

−(Id−R)u ∈ ∂f(u) ∩∆⊥ (17)
= ∂f(u) ∩ ∂ι∆(d) ⊆ ∂(f2ι∆)(u + d) (18)
⊆ ∂[cl (f2ι∆)](u + d), (19)

where d ∈ ∆.
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Imagination: phantom cycle and gap vectors

Because (Id−R)(d) = 0, we can write equations (17)–(19) as

0 ∈ ∂[cl (f2ι∆)](u + d) + (Id−R)(u + d).

With

d = (−
m∑

i=1

ui/m, . . . ,−
m∑

i=1

ui/m) ∈ ∆

and
x = u + d ∈ ∆⊥,

we have
0 ∈ ∂[cl (f2ι∆)](x) + (Id−R)(x), and x ∈ ∆⊥. (20)

The solution x given by (20) is called a phantom cycle of cl(f2ι∆).
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Imagination: phantom cycle and gap vectors

The primal-dual approach

The phantom cycle and gap vectors of cl(f2ι∆) can be put into the frame work
of the Attouch-Théra duality.

Theorem 8

Consider the following Attouch-Théra primal-dual problems

(P̃) 0 ∈ ∂[cl(f2ι∆)](x) + (Id−R)x and x ∈ ∆⊥, (21)

(D̃) 0 ∈ ∂(f∗ + ι∗∆)(y) +
1
2

y + T y. (22)

Then the following hold:
1 (D̃) is the Attouch-Théra dual of (P̃), and (D̃) has a unique solution.
2 (P̃) has a unique solution.
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Imagination: phantom cycle and gap vectors

Lemma 9

We have ran ∂[cl(f2ι∆)] ⊆ ∆⊥.

• For A : X ⇒ X , ran A denotes the range of A.
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Imagination: phantom cycle and gap vectors

Proof.

1©: Let us consider the Attouch-Théra dual of (D̃). As (f∗ + ι∗∆)∗ = cl(f2ι∆),
we have

0 ∈ ∂[cl(f2ι∆)](x) +

(
1
2

Id +T
)−1

(x). (23)

Since ( 1
2 Id +T )−1 = Id−R + 2P∆ by Fact 23, we obtain

0 ∈ ∂[cl(f2ι∆)](x) + (Id−R)x + 2P∆(x).

Because ran(Id−R) ⊆ ∆⊥, and Lemma 9, the above implies

−2P∆(x) ∈ ∂[cl(f2ι∆)](x) + (Id−R)x

from which 2P∆(x) ∈ ∆ ∩∆⊥, so P∆(x) = 0, and x ∈ ∆⊥. Hence, (23) is
equivalent to

0 ∈ ∂[cl(f2ι∆)](x) + (Id−R)x, and x ∈ ∆⊥, (24)

which is precisely (21).
(D̃) has a unique solution by Theorem 6.
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Imagination: phantom cycle and gap vectors

Recovering the classical cycle from the phantom cycle under . . .

Theorem 10

Let x be a phantom cycle of cl(f2ι∆), i.e.,

(P̃) 0 ∈ ∂[cl(f2ι∆)](x) + (Id−R)x, and x ∈ ∆⊥.

If
cl(f2ι∆)(x) = (f2ι∆)(x), and f2ι∆ is exact at x,

then x = u + v, v = (−
∑m

i=1 ui/m, . . . ,−
∑m

i=1 ui/m) ∈ ∆, and

0 ∈ ∂f(u) + (Id−R)u.

Consequently, u is a classical cycle for f.
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Imagination: phantom cycle and gap vectors

Classical cycles become the phantom cycle under a shift

Theorem 11

Let u = (u1, . . . ,um) with ui ∈ X for i = 1, . . . ,m, and let u be a classical cycle
for f, i.e.,

0 ∈ ∂f(u) + (Id−R)u. (25)

Set v = (−
∑m

i=1 ui/m, . . . ,−
∑m

i=1 ui/m) ∈ ∆ and x = u + v. Then

1 f2ι∆ is lower semicontinuous and exact at x.
2 x ∈ ∆⊥ and x solves

(P̃) 0 ∈ ∂(f2ι∆)(x) + (Id−R)x = ∂[cl(f2ι∆)](x) + (Id−R)x. (26)

Consequently, x is a phantom cycle for cl(f2ι∆).
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Imagination: phantom cycle and gap vectors

The following result summarizes the relationship among the classical cycles,
phantom cycle and gap vectors.

Corollary 12

With x and y given in Theorem 8, the following hold:
1 x,y ∈ ∆⊥.
2 y = Rx− x.
3 x = − y

2 − T y.

4 Z = (x + ∆) ∩ (∂f)−1(Rx− x) = (Id−R)−1(−y) ∩ (∂f )−1(y).
5 Z ⊆ (F1 × · · · × Fm) ∩ (Id−R)−1(−y).
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Imagination: phantom cycle and gap vectors

Characterization of Z 6= ∅ via phantom cycles

Recall the parallel sum (∀x ∈ X ) (∂f2∂g)(x) =
⋃

x=u+v ∂f (u) ∩ ∂g(v).

Corollary 13

Let x by given in Theorem 8. Then the following are equivalent:
1 Z 6= ∅.
2 cl(f2ι∆)(x) = (f2ι∆)(x) and f2ι∆ is exact at x.
3 (∂f2∂ι∆)(x) 6= ∅.
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Examples

For Ci ⊆ X , i = 1, . . . ,m, we let

C = C1 × · · · × Cm ⊆ X.

The first example illustrates the concepts of generalized cycles and gap
vectors when the classical ones do not exist.

Example 14

Let α ≥ 0. Consider

C1 = epi exp =
{

(x , r) | r ≥ exp(−x) + α and x ∈ R
}
, and C2 = R× {0}.

Then
1 ιC has neither a cycle nor a gap vector.
2 cl(ιC2ι∆) = ιC+∆ has both a generalized cycle and a generalized gap

vector, namely x = (0, α/2,0,−α/2),y = (0,−α,0, α) ∈ R4.

X. Wang (UBC Okanagan) Phantom cyles and gap vectors April 4–6, 2022 30 / 63



Examples

The second example characterizes when the set of cycles is a singleton or
infinite for a finite number of lines in a Hilbert space.

Example 15

Given m sets in X : Ci =
{

ai + tibi | ti ∈ R
}

where ai ∈ X and bi ∈ X \ {0} for
i = 1, . . . ,m. Then the following hold:

1 ιC always has a classical cycle, i.e., Z 6= ∅.
2 ιC has a unique classical cycle if and only if the set of vectors{

bi | i = 1, . . . ,m
}

is not parallel.

3 ιC has infinitely many classical cycles if and only if the set of vectors{
bi | i = 1, . . . ,m

}
is parallel.
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Examples

Finding phantom cycle and gap vectors

In view of the possibility of Z = ∅, one can consider the extended
Attouch-Théra primal-dual:

(EP) 0 ∈ ∂ cl(f2ι∆)(x) + (Id−R)x, (27)

(ED) 0 ∈ ∂(f∗ + ι∗∆)(y) +
1
2

y + T y. (28)

Both (EP) and (ED) always have solutions.

While (EP) gives all generalized cycles, (ED) gives the unique generalized
gap vector for cl(f2ι∆). To make the notation simple in the following proof, let
us write

g = cl(f2ι∆).
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Examples

Theorem 16

Let γ ∈]0,1[, δ = 2− γ, and let (λn)n∈N be a sequence in ]0, δ[ such that∑
n∈N λn(δ − λn) = +∞. Let x0 ∈ X and set

for n = 0,1, . . .⌊
yn = (1− γ)xn + γRxn,
xn+1 = xn + λn(proxγg yn − xn).

(29)

Then the following hold:
1 (xn)n∈N converges weakly to x, a generalized cycle of g, i.e., a solution of

(EP).
2 (Rxn − xn)n∈N converges strongly to y = Rx− x, the unique generalized

gap vector of g, i.e., the solution of (ED).
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Simons: mth roots of identity operator and an average operator

In 2021, Simons considered the root of identity operator: R : X → X is linear
and Rm = Id.

Define the average operator

A =
1
m

m∑
i=1

R i , and Y = ker(A) =
{

y ∈ X | Ay = 0
}
.

Also define S : X → X by
S = R − Id

and Q : X → X by

Q =
1
m

m−1∑
i=1

iR i ,

and Q0 = Q|Y , the restriction of Q to Y . Linear operators A, S, Q and
subspace Y are crucial in Simons’ analysis [10].
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Simons: mth roots of identity operator and an average operator

Fact 17 (Simons ’2021)

The following hold:
1 S(X ) ⊆ Y, and Q(Y ) ⊆ Y.
2 (∀y ∈ Y ) S(Qy) = y , and Q(Sy) = y .
3 AS = SA = 0.
4 SQ = QS = Id−A.
5 −Q0 − Id /2 is skew and so maximally monotone on Y .
6 If R is an isometry, then (∀x ∈ X ) 2〈x ,Sx〉+ ‖Sx‖2 = 0.
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Simons: mth roots of identity operator and an average operator

Example 18

A linear operator R : X → X satisfying Rm = Id does not imply R
nonexpansive. Let e1,e2,e3,e4 be the canonical base of the Euclidean space
R4.

1 Bambaii–Chowla’s matrix (1946): Set

B1 =


−1 −1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Then B5
1 = Id but ‖B1e1‖ =

√
2 > 1 = ‖e1‖.

2 Set

B2 =


1 1 1 1
0 −1 −2 −3
0 0 1 3
0 0 0 −1

 .

Then B2
2 = Id but ‖B2e4‖ =

√
20 > 1 = ‖e4‖.
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Simons: mth roots of identity operator and an average operator

3 Turnbull’s matrix (1927): Set

B3 =


−1 1 −1 1
−3 2 −1 0
−3 1 0 0
−1 0 0 0

 .

Then B3
3 = Id but ‖B3e1‖ =

√
20 > 1 = ‖e1‖.
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Simons: mth roots of identity operator and an average operator

However, the following holds.

Lemma 19

Let R : X → X be linear and Rm = Id for m ∈ N. Then the following are
equivalent:

1 R is nonexpansive.
2 R is an isometry.
3 R∗ is nonexpansive.
4 R∗ is an isometry.
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Simons: mth roots of identity operator and an average operator

With Example 18 and Proposition 19 in mind, when R is an isometry we have
the following new properties of A and S. We show that A is in fact a projection,
and that

Y = (Fix R)⊥ = ran S

whenever R is an isometry.

Theorem 20

Suppose that R is an isometry. Then the following hold:
1 ker A = ker A∗ = (Fix R)⊥ = (Fix R∗)⊥.
2 A = PFix R = PFix R∗ = A∗. In particular, ran A = ran A∗ = Fix R is closed.
3 ran S = (Fix R)⊥ = ran S∗. In particular, ran S = ran S∗ is closed.
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Simons: mth roots of identity operator and an average operator

Example 21

Without R being isometric, Theorem 20 fails. Take B2 in Example 18(ii) where
m = 2 to obtain

A =
1
2

(B2 + B2
2) =


1 1/2 1/2 1/2
0 0 −1 −3/2
0 0 1 3/2
0 0 0 0

 .

Because
‖Ae4‖ =

√
19/4 > ‖e4‖,

the operator A can neither be nonexpansive nor a projection operator.
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Simons: mth roots of identity operator and an average operator

Extended Simons’ lemma

We call the following result the extended Simons’s lemma.

Lemma 22

Let f ∈ Γ0(X ) with Y ∩ dom f ∗ 6= ∅. Then there exists a unique pair of vectors
(e,d) = (ef ,df ) ∈ Y × Y such that d = Se ∈ dom f ∗, e = Qd, and

(∀y ∈ Y ) f ∗(Se) + 〈y − Se,e〉 − f ∗(y) ≤ 0;

equivalently, e ∈ ∂(f ∗ + ιY )(Se). Consequently,

(∀x ∈ X ) f ∗(Se) + 〈Sx − Se,e〉 − f ∗(Sx) ≤ 0.

• In [10, Lemma 16] Simons proved Lemma 22 when f = σC , a support
function of a closed convex set C ⊆ X .
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Simons: mth roots of identity operator and an average operator

Lemma 23

Let f ∈ Γ0(X ) with Y ∩ dom f ∗ 6= ∅. Then the vector e = ef ∈ Y from
Lemma 22 is the unique vector satisfying

(f ∗ + ιY )(Se)− 〈Se,e〉+ cl(f2ιY⊥)(e) (30)
= (f ∗ + ιY )(Se)− 〈Se,e〉+ (f ∗ + ιY )∗(e) = 0. (31)
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Simons: mth roots of identity operator and an average operator

Theorem 24

Let R be an isometry and Y = (Fix R)⊥, let f ∈ Γ0(X ) with Y ∩ dom f ∗ 6= ∅,
and let (e,d) ∈ Y × Y be given by Lemma 22. Consider the Attouch–Théra
primal-dual inclusion problem:

(P) 0 ∈ ∂ cl(f2ιY⊥)(x) + (Id−R)x , (32)

(D) 0 ∈ ∂(f ∗ + ιY )(y) + (Id−R)−1y . (33)

Then the following hold:
1 (e,d) is a solution to the primal-dual problem (32)–(33), i.e., e solves (P)

and d solves (D). Moreover, d is the unique solution of (D).
2 (e,d) is the unique solution of the primal-dual problem

(P ′) 0 ∈ ∂ cl(f2ιY⊥)(x) + (Id−R)x and x ∈ Y , (34)

(D′) 0 ∈ ∂(f ∗ + ιY )(y) + (Id−R)−1y . (35)

More specifically, e is the unique solution of (P ′) and d is the unique
solution of (D′).
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Characterizations of classical cycle and gap vectors

Theorem 25

Let f ∈ Γ0(X ) with Y ∩ dom f ∗ 6= ∅ and let (e,d) ∈ Y × Y be given by
Lemma 22. Then the following statements are equivalent for every z ∈ X:

1 z = proxf Rz.
2 f ∗(Sz) + f (z) + 1

2‖Sz‖2 = 0.

3 Sz = d and f (z) = cl(f2ιY⊥)(e).

4 Sz = d and f (z) = cl(f2ιY⊥)(z).
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Characterizations of classical cycle and gap vectors

Proof of Theorem 25 I

1©⇔ 2©: z = proxf Rz ⇔ Rz ∈ z + ∂f (z)⇔ Sz ∈ ∂f (z)⇔

f ∗(Sz) + f (z) = 〈z,Sz〉 = −1
2
‖Sz‖2.

2©⇒ 3©: By 2©,

f ∗(Sz) + f (z) +
1
2
‖Sz‖2 = 0. (36)

By Lemma 22,
f ∗(Se) + 〈Sz − Se,e〉 − f ∗(Sz) ≤ 0.

Adding above two equations yields

f ∗(Se) + f (z) + 〈Sz − Se,e〉+
1
2
‖Sz‖2 ≤ 0.

Since
f ∗(Se) + f (z) ≥ 〈Se, z〉,
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Proof of Theorem 25 II

by the Fenchel–Young inequality, and

1
2
‖Sz‖2 = −〈Sz, z〉,

we have
〈Se, z〉+ 〈Sz − Se,e〉 − 〈Sz, z〉 ≤ 0,

from which
−〈S(z − e), z − e〉 = −〈Sz − Se, z − e〉 ≤ 0.

Then 1
2‖S(z − e)‖2 ≤ 0, so Sz = Se = d . Also, by Lemma 23 and

〈Se,e〉 = − 1
2‖Se‖2 = − 1

2‖Sz‖2, we obtain

f ∗(Sz) +
1
2
‖Sz‖2 + cl(f2ιY⊥)(e) = 0. (37)

Combining (36) and (37) gives f (z) = cl(f2ιY⊥)(e).
3©⇒ 2©:
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Characterizations of classical cycle and gap vectors

Proof of Theorem 25 III

Now 3© ensures Sz = d = Se and cl(f2ιY⊥)(e) = f (z). Also

〈Se,e〉 = −1
2
‖Se‖2 = −1

2
‖Sz‖2.

Then (30) in Lemma 23 gives

f ∗(Sz) +
1
2
‖Sz‖2 + f (z) = 0,

which is 2©.
3©⇔ 4©: Assume that Sz = d = Se. Then z − e ∈ S−1(0) = Fix R. Since
cl(f2ιY⊥) is translation-invariant with respect to Y⊥ = Fix R, we have

cl(f2ιY⊥)(z) = cl(f2ιY⊥)(e).
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Characterizations of classical cycle and gap vectors

When does
f (z) = cl(f2ιY⊥)(e)

or
f (z) = cl(f2ιY⊥)(z)?

X. Wang (UBC Okanagan) Phantom cyles and gap vectors April 4–6, 2022 50 / 63



Characterizations of classical cycle and gap vectors

Translation-invariant functions

Definition 26
We say that f : X → ]−∞,+∞] is translation-invariant with respect to a
subset C of X if f (x + c) = f (x) for every x ∈ X and c ∈ C.

Lemma 27

Let f ∈ Γ0(X ) and let C be a closed linear subspace of X . If f is
translation-invariant with respect to C, then dom f ∗ ⊆ C⊥ and

(f ∗ + ιC⊥)∗ = cl(f2ιC) = f2ιC = f .
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Characterizations of classical cycle and gap vectors

Theorem 28

Let f ∈ Γ0(X ) be translation-invariant with respect to Fix R and such that
Y ∩ dom f ∗ 6= ∅ where Y = (Fix R)⊥. Let d ∈ Y be given by Lemma 22. Then
the following statements are equivalent for every z ∈ X:

1 z = proxf Rz.
2 f ∗(Sz) + f (z) + 1

2‖Sz‖2 = 0.

3 Sz = d.
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Characterizations of classical cycle and gap vectors

Minimizers of f

Lemma 29

Let f ∈ Γ0(X ) with Y ∩ dom f ∗ 6= ∅ and let (e,d) ∈ Y × Y be given by
Lemma 22. Suppose in addition that Sz = d and z ∈ argmin f . Then

z = proxf Rz, and (38)

cl(f2ιY⊥)(e) = cl(f2ιY⊥)(z) = min cl(f2ιY⊥) = f (z). (39)
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Characterizations of classical cycle and gap vectors

Theorem 30

Let f ∈ Γ0(X ) with Y ∩ dom f ∗ 6= ∅ and let d ∈ Y be given by Lemma 22. Then
the following statements are equivalent for every z ∈ argmin f :

1 z = proxf Rz.
2 f ∗(Sz) + 1

2‖Sz‖2 + f (z) = 0.

3 Sz = d.
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Characterizations of classical cycle and gap vectors

Immediately we obtain the following result of Simons [10, Theorem 7].

Corollary 31

Let C be a nonempty closed convex subset of X . Let d ∈ Y be given by
Lemma 22 with f = ιC . Then the following statements are equivalent for every
z ∈ C:

1 z = PCRz.
2 σC(Sz) + 1

2‖Sz‖2 = 0.

3 Sz = d.
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Phantom cycle and gap vectors for arbitrary isometry R

The next result makes it clear that the classical cycles and gap vector of a
function f are closely related to those of cl(f2ιY⊥) and to which we refer as
phantom cycles and phantom gap vector.

Theorem 32

Let f ∈ Γ0(X ) with Y ∩ dom f ∗ 6= ∅ and let (e,d) = (ef ,df ) be given by
Lemma 22. Then the following hold:

1 The set Z of phantom cycles of f , which are defined to be the set of
classical cycles of the function cl(f2ιY⊥), i.e.,
Z =

{
z ∈ X | z = proxcl(f2ιY⊥ )(Rz)

}
, is always nonempty and

Z = e + Y⊥. Consequently, Z contains infinitely many elements
whenever Y⊥ = Fix R 6= {0}.

2 The phantom gap vector of f , i.e., the gap vector dcl(f2ιY⊥ ), is equal to
d = Sz ∈ Y for every z ∈ Z; moreover, ecl(f2ιY⊥ ) = e.
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Conclusions

Conclusions

1 The Attouch-Théra duality provide a unified framework for studying cycles
and gap vectors;

2 To define phantom cycles and gap vectors, one has to use cl(f2ι∆);
3 The forward-backward algorithms can be used to compute the phantom

cycles and gap vectors;
4 How do we approach

0 ∈ Ax + x− Rx

for a general maximally monotone operator A?
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Conclusions

Thank you!
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