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Variational inequality problem

• Suppose we want to minimize a differentiable function, say
φ : [a, b] → R, where [a, b] ⊆ R. If x0 is a solution, then a
necessary condition is the following:

(i) φ′(x0) = 0 if a < x0 < b.
(ii) φ′(x0) ≥ 0 if x0 = a.

(iii) φ′(x0) ≤ 0 if x0 = b.

The above can be combined as

⟨φ′(x0), y − x0⟩ ≥ 0,∀y ∈ [a, b].

• Let Ω ⊆ Rn be a non-empty closed convex subset and f : Ω → Rn.
Then the variational inequality problem VI(f ,Ω) is to find an
x∗ ∈ Ω such that

⟨f (x∗), y − x∗⟩ ≥ 0 ∀y ∈ Ω. (1)

1G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C.R. Acad. Sci. Paris, 258 (1964), 4413-4416.

Soumitra Dey Variational Inequality Problem and its generalizations



Variational
Inequality

Problem and its
generalizations

Soumitra Dey

Variational
inequality
problem

Inverse
variational
inequality
problem

Variational inequality problem Inverse variational inequality problem

• It is easy to see that the VI (1) is equivalent to the following
projection equation

x∗ = PΩ(x∗ − αf (x∗)) = PΩ(I − αf )x∗, (2)

where α > 0 is a constant and PΩ is the metric projection onto Ω
defined by

PΩ(x) = argmin
y∈Ω

∥x − y∥2 ∀x ∈ Rn.

Theorem 1.1
Let Ω be a non-empty compact and convex subset of Rn and f : Ω → Rn

be a continuous function. Then there exists a solution to the variational
inequality (1).
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Inverse variational inequality problem

An important generalization is known as inverse variational inequality
problem.

• Let Rn denote the real n-dimensional Euclidean space with inner
product ⟨·, ·⟩ and norm ∥ · ∥, respectively. An inverse variational
inequality (IVI) is to find an x∗ ∈ Rn such that

F(x∗) ∈ Ω and ⟨x∗, y − F(x∗)⟩ ≥ 0 ∀y ∈ Ω, (3)

where F is a mapping from Rn into itself and Ω is a nonempty
closed convex subset of Rn.

• If an inverse function x = F−1(u) = f (u) exists, then the above IVI
problem can be transformed into the following regular variational
inequality: find a point u∗ ∈ Ω such that

⟨f (u∗), v − u∗⟩ ≥ 0 ∀v ∈ Ω. (4)

2B. He, X. He, H. X. Liu, Solving a class of constrained ‘black-box’ inverse variational
inequalities, Eur. J. Oper. Res., 204(3) (2010) 391-401.
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• Similarly, it is easy to see that the IVI (3) is equivalent to the
following projection equation

F(x∗) = PΩ(F(x∗)− αx∗), (5)

where α > 0 is a constant and PΩ is the metric projection onto Ω
defined by

PΩ(x) = argmin
y∈Ω

∥x − y∥2 ∀x ∈ Rn.

• Zou, et. al. [3] proposed a neural network method to solve IVI (3)
by considering the following neural network:

ẋ = λ {PΩ(F(x)− αx)− F(x)} =: G(x), (6)

where ẋ = dx
dt and λ > 0 is a fixed parameter.

3X. Zou, D. Gong, L. Wang, Z. Chen, A novel method to solve inverse variational
inequality problems based on neural networks, Neurocomputing, 173 (2016), 1163-1168.
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Definition 2.1
A dynamical system is said to be globally exponentially stable at x∗ if
every trajectory starting at any initial point x(t0) ∈ Rn satisfy

∥x(t)− x∗∥ ≤ γe−ζ(t−t0), ∀t ≥ t0,

where γ and ζ are positive constants independent of the initial point.

Definition 2.2
A function f : Rn → Rn is said to be β-strongly monotone if for some
β > 0,

⟨f (x)− f (y), x − y⟩ ≥ β∥x − y∥2 ∀x, y ∈ Rn.

4H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in
Hilbert spaces, New York, Dordrecht, Heidelberg, London, 2011.
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Theorem 2.3
Consider IVI (3) with its nonempty solution set Ω∗ and its associated
neural network (6), where we assume F : Rn → Rn is a Lipschitz
continuous mapping. Assume, in addition that F is a symmetric gradient
mapping, that is, F = ∇g, where g : Rn → R is a convex, continuously
differentiable function. Then the following conclusions hold.

(i) Every trajectory x(t) of the neural network (6) converges to the set
of equilibrium points; that is,

lim
t→∞

dist(x(t),Ω∗) = 0. (7)

Equivalently, each cluster point of a trajectory x(t) is an
equilibrium point. [Here dist(x,Ω∗) := inf{∥x − z∥ : z ∈ Ω∗} is
the distance from x to Ω∗.]
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(ii) If IVI (3) has a unique solution x∗, i.e., Ω∗ = {x∗}, then the neural
network (6) is globally asymptotically stable at the equilibrium
point x∗.

(iii) If F is strongly monotone, then IVI (3) must have a unique solution
x∗ and further the neural network (6) is globally exponentially
stable at the equilibrium point x∗.

5Hong-Kun Xu, Soumitra Dey, V Vetrivel, Notes On the Neural Network Approach to
Inverse variational Inequalities, Optimization, 70(5-6) (2021), 901-910.
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Inverse quasi-variational inequality problem

Let f : Rn → Rn be a single-valued mapping and Φ : Rn → 2R
n

be a
set-valued mapping. The inverse quasi-variational inequality problem
(IQVIP) is to find a vector x ∈ Rn such that

f (x) ∈ Φ(x), ⟨x, y − f (x)⟩ ≥ 0,∀y ∈ Φ(x). (8)

• In the case where the set-valued mapping Φ : Rn → 2R
n

which
governs the IQVIP (8) has nonempty, closed and convex point
values, it is not difficult to check that x∗ is a solution to (8) if and
only if it is a solution to the projection equation

f (x) = PΦ(x)(f (x)− αx), (9)

where α > 0 is a fixed constant.

4D. Aussel, R. Gupta, and A. Mehra, Gap functions and error bounds for inverse quasi-variational inequality problems, J. Math. Anal.
Appl., 407 (2013), 270-280 .
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Neural netwoek for the IQVIP

• Motivated by the above neural network approaches to the IVI, here
we introduce the following network to solve IQVIP:

ẋ = λ(t)
{

PΦ(x)(f (x)− αx)− f (x)
}
= S(x, t), (10)

where ẋ = dx
dt and λ(t) > 0, t ≥ 0, are parameters.

• In particular, if λ(t) = λ for every t ∈ [0,∞) and Φ(x) = Ω for
every x ∈ Rn, then the network (10) reduces to the network (6),
which was considered and studied in ([3, 4]).
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Basic definitions and results

Lemma 2.4
Let Ω be a nonempty, closed and convex subset of Rn. Given x ∈ Rn and
z ∈ Ω, we have

z = PΩ(x) ⇐⇒ ⟨x − z, y − z⟩ ≤ 0 ∀y ∈ Ω. (11)

It turns out that the projection operator PΩ is nonexpansive.

Theorem 2.5
(Banach’s fixed point theorem) Let X be a Banach space and let
f : X → X be a strict contraction. Then f has a unique fixed point.

Soumitra Dey Variational Inequality Problem and its generalizations



Variational
Inequality

Problem and its
generalizations

Soumitra Dey

Variational
inequality
problem

Inverse
variational
inequality
problem

Variational inequality problem Inverse variational inequality problem

Our main results

Lemma 2.6
Let Φ : Rn → 2R

n
be a set-valued mapping with nonempty, closed and

convex point values. Then we have

∥u − PΦ(x)(u)− (v − PΦ(y)(v))∥ (12)
≤ ∥u − v∥+ ∥PΦ(x)(v)− PΦ(y)(v)∥ ∀x, y, u, v ∈ Rn.

Sketch of the proof:
Let x, y, u, v ∈ Rn. Using Lemma 2.4, we see that〈

v − PΦ(x)(v),PΦ(x)(u)− PΦ(x)(v)
〉
≤ 0 (13)

and 〈
u − PΦ(x)(u),PΦ(x)(v)− PΦ(x)(u)

〉
≤ 0. (14)
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continuation of the proof

Adding (13) and (14), we get

∥PΦ(x)(u)− PΦ(x)(v)∥2 ≤
〈
PΦ(x)(u)− PΦ(x)(v), u − v

〉
. (15)

It follows from (15) that

∥u − PΦ(x)(u)− (v − PΦ(x)(v))∥2 (16)

≤ ∥u − v∥2

and so,

∥u − PΦ(x)(u)− (v − PΦ(y)(v))∥ (17)
≤ ∥u − v∥+ ∥PΦ(x)(v)− PΦ(y)(v)∥.
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Theorem 2.7
Let Φ : Rn → 2R

n
be a set-valued mapping with nonempty, closed and

convex point values. Assume that f : Rn → Rn is L−Lipschitz
continuous and β−strongly monotone. Assume further that there exists
some κ > 0 such that

∥PΦ(x)(z)− PΦ(y)(z)∥ ≤ κ∥x − y∥ ∀x, y, z ∈ Rn (18)

and L2 − 2α(β − κ) < κ2, where α > 0 is a constant. Then the inverse
quasi-variational inequality problem (8) has a unique solution.
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Sketch of the proof

Define a mapping h : Rn → Rn by

h(x) = x − 1
α

f (x) +
1
α

PΦ(x)(f (x)− αx),

where α > 0 is a fixed constant.
It is clear that x∗ is a solution to the inverse quasi-variational inequality
if and only if x∗ is a fixed point of the mapping h.
Let x̄ = f (x)− αx and ȳ = f (y)− αy. Using Lemma 2.6, we see that

∥h(x)− h(y)∥ ≤ 1
α
(∥x̄ − ȳ∥+ κ∥x − y∥). (19)
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Continuation of the proof

Now,

∥x̄ − ȳ∥2 = ∥f (x)− αx − (f (y)− αy)∥2 (20)

≤ (L2 − 2βα+ α2)∥x − y∥2.

Using (19) and (20) we get,

∥h(x)− h(y)∥ ≤ 1
α
(
√
(L2 − 2βα+ α2) + κ)∥x − y∥. (21)

It clearly follows from our assumptions that h is a strict contraction with
constant (

√
(L2 − 2βα+ α2) + κ)/α ∈ [0, 1). Therefore, by the

Banach contraction principle (Theorem 2.5), the mapping h has a unique
fixed point. In other words, the inverse quasi-variational inequality
problem (8) has a unique solution.
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Remark 2.1
Note that assumption (18) is a kind of contraction property for the
set-valued mapping Φ on Rn. In several applications the point image
can be written as

Φ(x) = s(x) + Ω,

where s(x) is a Lipschitz continuous single-valued mapping from Rn into
itself with Lipschitz constant λ and Ω is a closed convex subset of Rn . In
this case, the assumption (18) holds with the same Lipschitz constant
value of λ.
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Existence and uniqueness of a solution to (10)

Theorem 2.8
Let Φ : Rn → 2R

n
be a set-valued mapping with nonempty, closed and

convex point images and let f : Rn → Rn be a Lipschitz continuous
mapping with Lipschitz constant L. Assume that there exists a number
κ > 0 such that

∥PΦ(x)(z)− PΦ(y)(z)∥ ≤ κ∥x − y∥ ∀x, y, z ∈ Rn. (22)

Then the dynamical system (10) a has unique solution.
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Proof.
We claim that S(x, t) is Lipschitz continuous for all fixed t ≥ 0. Indeed,
we have

∥S(x, t)− S(y, t)∥
= ∥λ(t)(PΦ(x)(f (x)− αx)− f (x))− λ(t)(PΦ(y)(f (y)− αy)− f (y))∥
≤ (2L + α+ κ)λ(t)∥x − y∥.

Furthermore, if λ(t) is continuous, then the function S(x, ·) is continuous
for all fixed x ∈ Rn and the differential equation (10), for arbitrary
initial points x0 ∈ Rn, has a unique solution for all t ≥ t0 ≥ 0. □

7P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, Vol.
18. SIAM, Philadelphia, 2002.
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• The evolution function mt is often the solution of a differential
equation of motion:

ẋ = h(x). (23)

Recall that a function V : Rn → R is said to be a Lyapunov
function (about x = xe) for the dynamical system (23) if the
following three properties are satisfied:
(L1) V is positive definite, namely, V(x) ≥ 0 for all x ∈ Rn and V(x) = 0

if and only if x = xe;
(L2) V̇ is negative definite along the trajectories of (23), that is, if x(t) is a

trajectory of (23), then V̇(x(t)) ≤ 0 for all t ≥ 0 and V̇(x(t)) < 0 for
all x ̸= xe;

(L3) V is coercive (also known as radially unbounded), that is, V(x) → ∞
as ∥x∥ → ∞.

Theorem 2.9

(Lyapunov’s Theorem) Let xe be an equilibrium of the dynamical system
(23). If there exists a Lyapunov function about xe, then the dynamical
system (23) globally asymptotically stable at the equilibrium point xe.
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Stability analysis

Theorem 2.10
Let Φ : Rn → 2R

n
be a set-valued map with nonempty, closed and

convex point values and let f : Rn → Rn be Lipschitz continuous with
Lipschitz constant L and β-strongly monotone. Assume that the
parameters λ(t) ∈ C([0,∞)). Assume that

1 + 2κ− 2β + α2 + L2 − 2αβ < 0,∫ ∞

t0
λ(t)dt = +∞

and

L2 − 2α(β − κ) < κ2,

where κ satisfies

∥PΦ(x)(z)− PΦ(y)(z)∥ ≤ κ∥x − y∥ ∀x, y, z ∈ Rn.
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Continuation

Then the dynamical system (10) converges to the solution of IQVIP (8)
at the rate

∥x(t)− x∗∥ ≤ ∥x0 − x∗∥ exp
∫ t

t0
Λ(t)dt,

where Λ(t) = λ(t)[1 + 2κ− 2β + α2 + L2 − 2αβ].
Furthermore, the dynamical system (10) is globally asymptotically at
the point of equilibrium x∗. In addition, if λ(t) ≥ λ∗ > 0 for every
t ≥ 0, then the dynamical system (10) is globally exponentially stable at
the point of equilibrium x∗.

Soumitra Dey Variational Inequality Problem and its generalizations



Variational
Inequality

Problem and its
generalizations

Soumitra Dey

Variational
inequality
problem

Inverse
variational
inequality
problem

Variational inequality problem Inverse variational inequality problem

Sketch of the proof

• Using Theorem 2.8, we can easily show that (10) has a unique
solution. Let x∗ be the unique solution of the IQVIP (8). Now we
have to show that the trajectories of the network are globally
asymptotically and exponentially stable at the equilibrium point x∗.
To this end, consider the Lyapunov function

V(x) = ∥x − x∗∥2.

Soumitra Dey Variational Inequality Problem and its generalizations



Variational
Inequality

Problem and its
generalizations

Soumitra Dey

Variational
inequality
problem

Inverse
variational
inequality
problem

Variational inequality problem Inverse variational inequality problem

•

V ′(x) = 2 ⟨x − x∗, x′⟩
= 2

〈
x − x∗, λ(t)(PΦ(x)(f (x)− αx)− f (x))

〉
≤ λ(t)[1 + 2κ− 2β + α2 + L2 − 2αβ]V(x) = Λ(t)V(x),

where Λ(t) = λ(t)[1 + 2κ− 2β + α2 + L2 − 2αβ].

• Since
∫∞

t0
λ(t)dt = +∞ and 1 + 2κ− 2β + α2 + L2 − 2αβ < 0,

we see that
∫∞

t0
Λ(t)dt = −∞. Hence exp

∫∞
t0

Λ(t)dt = 0.

• Consequently, the trajectory x(t) converges to the unique solution
x∗ of (8) and it is not difficult to show that

∥x(t)− x∗∥ ≤ ∥x0 − x∗∥ exp
∫ t

t0
Λ(t)dt. (24)
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• It now follows from Theorem 2.9 that the dynamical system (10) is
globally asymptotically stable at the equilibrium point x∗.

• If λ(t) ≥ λ∗ > 0 for every t ≥ 0, from (24) we get

∥x(t)− x∗∥ ≤ ∥x0 − x∗∥e−ζ(t−t0) ∀t ≥ t0,

where ζ = −λ∗(1 + 2κ− 2β + α2 + L2 − 2αβ) > 0.
Therefore, the dynamical system (10) is globally exponentially
stable at the equilibrium point x∗.
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Discretization of the Network (10)

The explicit discretization of the neural network (10) with respect to t
with the step-size hn and with the initial point x0 ∈ Rn is as follows:

xn+1 − xn

hn
= λn{PΦ(xn)(f (xn)− αxn)− f (xn)}, (25)

If hn = 1, then the above scheme reduces to the following one:

xn+1 = xn + λn{PΦ(xn)(f (xn)− αxn)− f (xn)}. (26)
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Theorem 2.11
Assume that

1 f : Rn → Rn is β-strongly monotone and L-Lipschitz continuous;
2 Φ(x) = s(x) + Ω, where s : Rn → Rn is a Lipschitz continuous

mapping with Lipschitz constant l > 0 and Ω is a nonempty, closed
and convex subset of Rn;

3

l < β,
L2 + l2

2(β − l)
< α; (27)

4 for every n ∈ N,

0 < A < λn < B, where (28)

0 <
B2

A
<

(2α(β − l) − (L2 + l2))

α2(β − l)
. (29)

Then the sequence {xn} generated by (26) converges strongly to the
unique solution of the IQVIP (8).
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Sketch of the proof:

• Using our above assumptions, and the existence and uniqueness
Theorem 2.7 for the IQVIP (8), we conclude that it has a unique
solution. Let x∗ be the unique solution of the IQVIP (8). Recalling
(26), we have

xn+1 = xn + λn{PΦ(xn)(f (xn)− αxn)− f (xn)}

•

∥xn+1 − x∗∥2 = ∥xn − x∗ + λn{PΦ(xn)(f (xn)− αxn)− f (xn)}∥2 (30)

= ∥xn − x∗∥2 + λ2
n∥PΦ(xn)(f (xn)− αxn)− f (xn)∥2

+ 2λn
〈
xn − x∗,PΦ(xn)(f (xn)− αxn)− f (xn)

〉
.
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• Setting yn = PΦ(xn)(f (xn)− αxn), we see that we need to
approximate ∥yn − f (xn)∥2.
Note that

yn = Ps(xn)+Ω(f (xn)− αxn) (31)
= s(xn) + PΩ(f (xn)− αxn − s(xn)),

Therefore, using the characterization of the nearest point
projection, we see that, for any n ∈ N,

⟨f (xn)− αxn − yn, z − yn + s(xn)⟩ ≤ 0 ∀z ∈ Ω. (32)
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• Since x∗ is a solution of the IQVIP (8), we have x∗ ∈ Rn and

f (x∗) = PΦ(x∗)(f (x∗)− αx∗). (33)

• Using (33), we get

⟨αx∗, f (x∗)− yn + s(xn)− s(x∗)⟩ ≤ 0 ∀n ∈ N. (34)

• Therefore it follows from (32) that

⟨f (xn)− αxn − yn, f (x∗)− yn + s(xn)− s(x∗)⟩ ≤ 0 ∀n ∈ N.
(35)
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• Combining (34) and (35), we have

⟨f (xn)− αxn − yn + αx∗, f (x∗)− yn + s(xn)− s(x∗)⟩ ≤ 0 ∀n ∈ N
(36)

• Simplifying (36), we get

∥f (xn)− yn∥2 ≤⟨f (xn)− yn, f (xn)− f (x∗)⟩+ ⟨yn − f (xn), s(xn)− s(x∗)⟩
(37)

+ α ⟨xn − x∗, f (xn)− yn⟩ − α ⟨xn − x∗, f (xn)− f (x∗)⟩
+ α ⟨xn − x∗, s(xn)− s(x∗)⟩ .
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• Since f is L-Lipschitz continuous and β-strongly monotone, s is l-Lipschitz
continuous. Using inequality (37), we get

⟨xn − x∗, yn − f (xn)⟩ ≤
1
α
(α(l − β) +

L2 + l2

2
)∥xn − x∗∥2, (38)

• Using the inequality ab ≤ a2

2 + b2

2 in (37) and (27), we obtain

α ⟨xn − x∗, yn − f (xn)⟩ ≤
(L2 + l2)− 2α(β − l)

2α(β − l)
∥yn − f (xn)∥2. (39)
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• Using (38), (28) and (29) we obtain the following inequality:

∥xn+1 − xn∥
2 ≤∥xn − x∗∥2 −

(
2λn −

2λ2
nα

2(β − l)

2α(β − l) − (L2 + l2)

)( 2α(β − l) − L2 − l2

2α

)
∥xn − x∗∥2

.

(40)

• This implies that

∥xn+1 − x∗∥ ≤

√√√√1 −
(

2λn −
2λ2

nα
2(β − l)

2α(β − l) − (L2 + l2)

)( 2α(β − l) − L2 − l2

2α

)
∥xn − x∗∥. (41)
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• Define for every n ∈ N,

Q(α, λn) :=

√√√√1 −
(

2λn −
2λ2

nα
2(β − l)

2α(β − l) − (L2 + l2)

)( 2α(β − l) − L2 − l2

2α

)
.

Finally, we get

∥xn+1 − x∗∥ ≤ Q(α, λn)∥xn − x∗∥ (42)
...
≤ Qn(α, λn)∥x0 − x∗∥.
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• Let C1 = 2α(β−l)−(L2+l2)
α and C2 = α(β − l). Then we have

Q(α, λn)
2 = 1 + λ2

nC2 − λnC1. (43)

Using facts (28) and (29), we get

Q(α, λn)
2 < 1 + B2C2 − AC1 = r < 1.

Again, from (42) we infer that

0 ≤ ∥xn+1 − x∗∥ < rn/2∥x0 − x∗∥ ∀n ∈ N. (44)

The proof is complete.
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Remark 2.2
In particular, if we take λn = 1

α for every n ∈ N and Φ(x) = Ω (that is,
s(x) = 0) for every x ∈ Rn, then (26) reduces to the algorithm

xn+1 = xn +
1
α
{PΩ(f (xn)− αxn)− f (xn)}, (45)

which was studied by He et al. [4].
In this case, the conditions on parameters of Theorem 2.11 reduces to
α > L2

β and the sequence {xn} satisfies the following inequality:

∥xn+1 − x∗∥ ≤
√(

1 − αβ − L2

α2

)
∥xn − x∗∥, (46)

where β and L are the strong monotonicity and Lipschitz constants,
respectively, of the function f . Therefore, the iterative sequence
generated in (46) converges to x∗.

4X. He, H. X. Liu, Inverse variational inequalities with projection-based solution
methods, Eur. J. Oper. Res., 208 (2011) 12-18.
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An example

• Let Ω = B[0, 1] ⊂ R3, the closed unit ball centered at the origin.
Consider the functions f (x) = 2x and s(x) = x/4 from R3 into
itself. Let α = 2 and λ(t) = 1 + t3, where t ≥ 0. Then we have
λ(t) ∈ C([0,+∞)) and∫ ∞

t0=0
λ(t)dt = +∞.

Let Φ(x) = s(x) + Ω.
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• It can be verified that the above parameters satisfy the following
conditions:

1 + 2κ− 2β + α2 + L2 − 2αβ < 0 and

L2 − 2α(β − κ) < κ2.

• Using Theorem 2.7, it not difficult to check that (0, 0, 0) is the
unique equilibrium point for the neural network (10), that is,
(0, 0, 0) is the unique solution of the IQVIP (8). According to
Theorem 2.10, the neural network is globally asymptotically and
exponentially stable at (0, 0, 0). The graph below shows that the
trajectories of (10) globally converge to the optimal solution
(0, 0, 0) with different starting points. Furthermore, we see that the
corresponding neural network converges at a faster rate.

Soumitra Dey Variational Inequality Problem and its generalizations



Variational
Inequality

Problem and its
generalizations

Soumitra Dey

Variational
inequality
problem

Inverse
variational
inequality
problem

Variational inequality problem Inverse variational inequality problem

Fig. 1 Transient behavior of the neural network (10).
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Conclusions

• We have proved an existence and uniqueness theorem for the
IQVIP (8).

• We presents a recurrent neural network model for solving inverse
quasi-variational inequality problems. Using the Lyapunov theory
functional differential equations, we have established, under certain
conditions, the existence of the solution to the proposed network, as
well as its asymptotic stability and exponential stability.

• We have proved that the sequence generated by the discretization of
the network (10) converges to the solution of the IQVIP (8) under
certain assumptions on the parameters involved. Finally, we have
provided a numerical example to illustrate our theoretical analysis.
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