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This disperse dynamical system has prototype

in the mathematical economics In particular,

it is an abstract extension of the classical von

Neumann-Gale model. Our dynamical system

is described by a compact metric space of states

and a transition operator which is set-valued.

Dynamical systems theory has been a rapidly

growing area of research which has various ap-

plications to physics, engineering, biology and

economics. In this theory one of the goals is

to study the asymptotic behavior of the tra-

jectories of a dynamical system.
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Let (X, ρ) be a compact metric space and let

a : X → 2X\{∅} be a set-valued mapping whose

graph

graph(a) = {(x, y) ∈ X ×X : y ∈ a(x)}

is a closed subset of X×X. For each nonempty

subset E ⊂ X set

a(E) = ∪{a(x) : x ∈ E} and a0(E) = E.

By induction we define an(E) for any natural

number n and any nonempty subset E ⊂ X as

follows:

an(E) = a(an−1(E)).
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We study convergence and structure of tra-

jectories of the dynamical system generated

by the set-valued mapping a. This system is

called a discrete dispersive dynamical system.

A sequence {xt}∞t=0 ⊂ X is called a trajectory

of a (or just a trajectory if the mapping a is

understood) if xt+1 ∈ a(xt) for all integers t ≥
0.

Let T2 > T1 be integers. A sequence {xt}
T2
t=T1

⊂
X is called a trajectory of a (or just a trajectory

if the mapping a is understood) if xt+1 ∈ a(xt)

for all integers t ∈ {T1, . . . , T2 − 1}.
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Define

Ω(a) = {z ∈ X : for each ϵ > 0

there is a trajectory {xt}∞t=0

such that lim inf
t→∞

ρ(z, xt) ≤ ϵ}.

Clearly, Ω(a) is a nonempty closed subset of

(X, ρ). In the literature the set Ω(a) is called

a global attractor of a. Note that in the works

by A. M. Rubinov Ω(a) is called a turnpike

set of a. This terminology is motivated by

mathematical economics.
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For each x ∈ X and each nonempty closed sub-

set E ⊂ X put

ρ(x,E) = inf{ρ(x, y) : y ∈ E}.

It is clear that for each trajectory {xt}∞t=0 we

have

lim
t→∞

ρ(xt,Ω(a)) = 0.

It is not difficult to see that if for a nonempty

closed set B ⊂ X

lim
t→∞

ρ(xt, B) = 0

for each trajectory {xt}∞t=0, then Ω(a) ⊂ B.
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Let ϕ : X → R1 be a continuous function such

that

ϕ(z) ≥ 0 for all z ∈ X,

ϕ(y) ≤ ϕ(x) for all x ∈ X and all y ∈ a(x).

It is clear that the function ϕ is a Lyapunov

function for the dynamical system generated

by the mapping a.

8



It should be mentioned that in mathematical

economics usually X is a subset of the finite-

dimensional Euclidean space and ϕ is a linear

functional on this space. Our goal is to study

approximate solutions of the problem

ϕ(xT ) → max,

{xt}Tt=0 is a program satisfying x0 = x,

where x ∈ X and a natural number T are given.
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The following theorem theorem was obtained

in A. J. Zaslavski, Structure of trajectories of

discrete dispersive dynamical systems, Com-

munications in Mathematical Analysis 6 2009,

1–9.

Theorem 1 The following properties are equiv-

alent:

(1) If a sequence {xt}∞t=−∞ ⊂ X satisfies xt+1 ∈
a(xt) and ϕ(xt+1) = ϕ(xt) for all integers t,

then

{xt}∞t=−∞ ⊂ Ω(a).

(2) For each ϵ > 0 there exists a natural num-

ber T (ϵ) such that for each trajectory {xt}∞t=0 ⊂
X satisfying ϕ(xt) = ϕ(xt+1) for all integers

t ≥ 0 the inequality ρ(xt,Ω(a)) ≤ ϵ holds for all

integers t ≥ T (ϵ).
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For each x ∈ X set

π(x) = sup{ lim
t→∞

ϕ(xt) :

{xt}∞t=0 is a trajectory and x0 = x}.

The function π plays an important role in our

study.

The following two useful results were also ob-

tained in the same paper.

Prop 1 Let x ∈ X. Then there is a trajec-

tory {xt}∞t=0 such that x0 = x and π(x) =

limt→∞ ϕ(xt).

Prop 2 The function π : X → R1 is upper

semicontinuous.
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It is clear that for each x ∈ X and each y ∈ a(x)

π(y) ≤ π(x),

for each x ∈ X

π(x) ≤ ϕ(x)

and that for each x ∈ X and each natural num-

ber n

π(x) ≤ sup{ϕ(y) : y ∈ an(x)}.

It is easy to see that the following proposition

holds.

Prop 3 Let x ∈ X and {xt}∞t=0 ⊂ X be a tra-

jectory such that x0 = x. Then

lim
t→∞

ϕ(xt) = π(x)

if and only if for each integer t ≥ 0

π(xt+1) = max{π(z) : z ∈ a(xt)}.
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The following useful result was also proved in

the same paper.

Prop 4 Let x ∈ X. Then

π(x) = lim
n→∞ sup{ϕ(y) : ∈ an(x)}.

The following theorem is the first turnpike re-

sult obtained in AZ 2009. It describes the

structure of optimal (with respect to the func-

tional ϕ) trajectories of a.

13



Theorem 2 Assume that property (1) of The-

orem 1 holds. Let ϵ > 0 and x ∈ X. Then there

exist δ > 0 and a natural number L such that

for each integer T > 2L and each trajectory

{xt}Tt=0 satisfying

x0 = x and ϕ(xT ) ≥ π(x0)− δ

the following inequality holds:

ρ(xt,Ω(a)) ≤ ϵ, t = L, . . . , T − L.
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We use the following property introduced in

AZ 2009.

(P) If x1, x2 ∈ Ω(a) and ϕ(x1) = ϕ(x2), then

x1 = x2.

Note that the property (P) holds for many

models of economic dynamics for which Ω(a)

is a subinterval of a line.

The next convergence result was established in

AZ 2009.

Theorem 3 Assume that property (P) holds.

Then each trajectory of a converges to an el-

ement of Ω(a).
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It is not difficult to see that the following result

holds.

Prop 5 Assume that property (P) holds and

that {xt}∞t=0 is a trajectory of a such that

lim
t→∞

ϕ(xt) = π(x).

Then by Theorem 7 there exists

F (x) = lim
t→∞

xt,

the equality

ϕ(F (x)) = lim
t→∞

ϕ(xt) = π(x)

holds and moreover, F (x) is a unique element

of Ω(a) belonging to ϕ−1(π(x)).
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In the sequel if property (P) holds, then for

each x ∈ X we denote by F (x) the unique ele-

ment of

Ω(a) ∩ ϕ−1(π(x)).

The following theorem is the second turnpike

result obtained in AZ 2009. It describes the

structure of optimal (with respect to the func-

tional ϕ) trajectories of a.

Theorem 4 Assume that property (P) and prop-

erty (1) of Theorem 1 hold. Let ϵ > 0 and

x ∈ X. Then there exist δ > 0 and a natural

number L such that for each integer T > 2L

and each trajectory {xt}Tt=0 satisfying

x0 = x and ϕ(xT ) ≥ π(x)− δ

the following inequality holds:

ρ(xt, F (x)) ≤ ϵ, t = L, . . . , T − L.
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Theorems 6 and 9 establish the turnpike prop-
erties for approximate solutions of the problem

ϕ(xT ) → max,

{xt}Tt=0 is a program satisfying x0 = x,

where x ∈ X and a natural number T are given.
In Theorem 6, the turnpike is the set Ω(a)
while in Theorem 9, the turnpike is a point
F (x).

We obtain generalizations of these results which
show that the turnpike properties still hold in
the case when x0 is not necessarily x but a
point close to x. We also establish strong ver-
sions of the turnpike when x ∈ Ω(a). In this
case for a program {xt}Tt=0 satisfying the as-
sumptions of Theorem 6,

ρ(xt,Ω(a)) ≤ ϵ, t = 0, . . . , T − L.

If it is satisfies the assumptions of Theorem 9,
then

ρ(xt, F (x)) ≤ ϵ, t = 0, . . . , T − L.
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Theorem 5 Assume that property (1) of The-

orem 1 holds, x ∈ X, the family of mappings

{an : n = 1,2, . . . } is equicontinuous at the

point x and that ϵ > 0. Then there exist δ > 0

and a natural number L such that for each in-

teger T > 2L and each trajectory {xt}Tt=0 sat-

isfying

ρ(x0, x) ≤ δ and ϕ(xT ) ≥ π(x0)− δ

the following inequality holds:

ρ(xt,Ω(a)) ≤ ϵ, t = L, . . . , T − L.
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Theorem 6 Assume that the property (P) and

property (1) of Theorem 1 hold, x ∈ X, the

family of mappings {an : n = 1,2, . . . } is equicon-

tinuous at the point x and that ϵ > 0. Then

there exist δ > 0 and a natural number L such

that for each integer T > 2L and each trajec-

tory {xt}Tt=0 satisfying

ρ(x0, x) ≤ δ and ϕ(xT ) ≥ π(x0)− δ

the following inequality holds:

ρ(xt, F (x)) ≤ ϵ, t = L, . . . , T − L.

20



Theorem 7 Assume that the property (1) of

Theorem 1 holds, x ∈ Ω(a), the family of map-

pings {an : n = 1,2, . . . } is equicontinuous at

the point x and that ϵ > 0. Then there ex-

ist δ > 0 and a natural number L such that for

each integer T > L and each trajectory {xt}Tt=0
satisfying

ρ(x0, x) ≤ δ and ϕ(xT ) ≥ π(x0)− δ

the following inequality holds:

ρ(xt,Ω(a)) ≤ ϵ, t = 0, . . . , T − L.

21



Theorem 8 Assume that property (P) and prop-

erty (1) of Theorem 1 hold, x ∈ Ω(a), the fam-

ily of mappings {an : n = 1,2, . . . } is equicon-

tinuous at the point x and that ϵ > 0. Then

there exist δ > 0 and a natural number L such

that for each integer T > L and each trajectory

{xt}Tt=0 satisfying

ρ(x0, x) ≤ δ and ϕ(xT ) ≥ π(x0)− δ

the following inequality holds:

ρ(xt, F (x)) ≤ ϵ, t = 0, . . . , T − L.
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Theorem 9 Let property (1) of Theorem 1

hold and let ϵ be a positive number. Then

there exists an integer L ≥ 1 such that for ev-

ery natural number T > L and every trajectory

{xt}Tt=0 the inequality

Card({t ∈ {0, . . . , T} : ρ(xt,Ω(a)) > ϵ}) ≤ L

is valid.
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Theorem 10 Assume that the function π is

continuous at any point of Ω(a). Let ϵ ∈ (0,1).

Then there exist δ > 0 and a natural number

L such that for every natural number T > 2L

and every trajectory {xt}Tt=0 satisfying

ϕ(xT ) ≥ π(x0)− δ

there exists an integer τ ∈ {0, . . . , L} such that

ρ(xt,Ω(a)) ≤ ϵ, t = τ, . . . , T − L.

Moreover, if ρ(x0,Ω(a)) ≤ δ, then τ = 0.
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Our dynamical system has a prototype in the

economic growth theory. We mean the fol-

lowing von Neumann-Gale model. Consider

the Euclidean space Rn equipped with the in-

ner product ⟨·, ·⟩ which induces the Euclidean

norm ∥ · ∥, ρ(x, y) = ∥x − y∥, x, y ∈ Rn. Let

Rn+ = {x = (x1, . . . , xn) : xi ≥ 0, i = 1, . . . , n},
p = (p1, . . . , pn) ∈ Rn, pi > 0, i = 1, . . . , n and

X = {x ∈ Rn+ : ⟨p, x⟩ ≤ 1}. The model is deter-

mined by a set-valued a : X → 2X \ ∅ such that

its graph is a convex set and a(λx) = λa(x) for

every x ∈ X and every λ ≥ 0. Usually, it turns

out that for this mapping a, Ω(a) = {λx̂ : λ ∈
[0,1]}, where x̂ ∈ X satisfies ⟨p, x̂⟩ = 1, prop-

erty (1) of Theorem 1 holds and the function

π is continuous at any point of Ω(a).
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We obtain a turnpike result for approximate

solutions of problems

ψ(xT ) → max,

{xt}Tt=0 is a trajectory satisfying x0 = x,

where x ∈ X and a natural number T are given,

and the function ψ satisfies certain assump-

tions but it is not necessarily the Lyapunov

function ϕ.

We assume that the following assumption holds.

(A1) For each ϵ > 0 there exists δ > 0 such

that for each x ∈ X satisfying ρ(x,Ω(a)) ≤ δ

there exist ξ1, ξ2 ∈ Ω(a) such that

ρ(x, ξi) ≤ ϵ, i = 1,2 and a(ξ1) ⊂ a(x) ⊂ a(ξ2).
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Let M be a set of functions ψ : X → [0,∞)

such that ϕ ∈ M and the following assumption

holds.

(A2) For each ϵ > 0 there exists δ > 0 such

that for each ξ1, ξ2 ∈ Ω(a) satisfying ϕ(ξ1) ≤
ϕ(ξ2)− ϵ, each integer n ≥ 1 and each ψ ∈ M,

sup{ψ(z) : z ∈ an(ξ1)}+δ ≤ sup{ψ(z) : z ∈ an(ξ2)}.

(Note that (A2) holds if M = {ϕ}.)
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Theorem 11 Assume that the function π is

continuous at any point of Ω(a). Let ϵ > 0.

Then there exist δ > 0 and a natural number

L such that for every natural number T > 5L,

every ψ ∈ M and every trajectory {xt}Tt=0 sat-

isfying

ψ(xT ) ≥ sup{ψ(z) : z ∈ an(x0)} − δ

there exists an integer τ ∈ {0, . . . ,2L} such that

ρ(xt,Ω(a)) ≤ ϵ, t = τ, . . . , T − L.

Moreover, if ρ(x0,Ω(a)) ≤ δ, then τ = 0.
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