Non-commutative peak points in operator algebras

Raphaël Clouâtre

University of Manitoba

Noncommutative Analysis at the Technion June 2022

This talk is based on work from several projects, some of which joint with Ian Thompson.

・ロト ・回ト ・ヨト ・ヨト

X compact metric space

 $\mathcal{F} \subset \mathrm{C}(X)$ unital, norm-closed subalgebra that separates the points of X

・ロト ・回ト ・ヨト ・ヨ

 \boldsymbol{X} compact metric space

 $\mathcal{F} \subset \mathcal{C}(X)$ unital, norm-closed subalgebra that separates the points of X (a uniform algebra)

 \boldsymbol{X} compact metric space

 $\mathcal{F} \subset \mathcal{C}(X)$ unital, norm-closed subalgebra that separates the points of X (a uniform algebra)

 $B \subset X$ is a boundary for \mathcal{F} if

 $||f|| = \max_{x \in B} |f(x)|, \quad f \in \mathcal{F}$

・ロト ・四ト ・ヨト ・ヨト

X compact metric space $\mathcal{F}\subset \mathcal{C}(X) \text{ unital, norm-closed subalgebra that separates the points of } X$ (a uniform algebra)

 $B \subset X$ is a boundary for \mathcal{F} if

$$||f|| = \max_{x \in B} |f(x)|, \quad f \in \mathcal{F}$$

If $Y \subset X$ is a closed boundary for \mathcal{F} , then the restriction $\rho_Y : \mathcal{F} \to C(Y)$ is isometric.

・ロト ・回ト ・ヨト ・ヨト

X compact metric space $\mathcal{F}\subset \mathcal{C}(X) \text{ unital, norm-closed subalgebra that separates the points of } X$ (a uniform algebra)

 $B \subset X$ is a boundary for \mathcal{F} if

$$||f|| = \max_{x \in B} |f(x)|, \quad f \in \mathcal{F}$$

If $Y \subset X$ is a closed boundary for \mathcal{F} , then the restriction $\rho_Y : \mathcal{F} \to C(Y)$ is isometric. We may view \mathcal{F} as a subalgebra of C(Y).

X compact metric space $\mathcal{F} \subset C(X)$ unital, norm-closed subalgebra that separates the points of X (a uniform algebra)

 $B \subset X$ is a boundary for \mathcal{F} if

$$||f|| = \max_{x \in B} |f(x)|, \quad f \in \mathcal{F}$$

If $Y \subset X$ is a closed boundary for \mathcal{F} , then the restriction $\rho_Y : \mathcal{F} \to C(Y)$ is isometric. We may view \mathcal{F} as a subalgebra of C(Y).

How can we find the smallest closed boundary for \mathcal{F} (the Shilov boundary)?

・ロト ・四ト ・ヨト ・ヨト

X compact metric space $\mathcal{F} \subset C(X)$ unital, norm-closed subalgebra that separates the points of X (a uniform algebra)

 $B \subset X$ is a boundary for \mathcal{F} if

$$||f|| = \max_{x \in B} |f(x)|, \quad f \in \mathcal{F}$$

If $Y \subset X$ is a closed boundary for \mathcal{F} , then the restriction $\rho_Y : \mathcal{F} \to C(Y)$ is isometric. We may view \mathcal{F} as a subalgebra of C(Y).

How can we find the smallest closed boundary for \mathcal{F} (the Shilov boundary)?

 $x \in X$ is in the Choquet boundary of \mathcal{F} if there is a **unique** Borel probability measure μ on X satisfying

$$f(x) = \int_X f d\mu, \quad f \in \mathcal{F}.$$

X compact metric space $\mathcal{F} \subset C(X)$ unital, norm-closed subalgebra that separates the points of X (a uniform algebra)

 $B \subset X$ is a boundary for \mathcal{F} if

$$||f|| = \max_{x \in B} |f(x)|, \quad f \in \mathcal{F}$$

If $Y \subset X$ is a closed boundary for \mathcal{F} , then the restriction $\rho_Y : \mathcal{F} \to C(Y)$ is isometric. We may view \mathcal{F} as a subalgebra of C(Y).

How can we find the smallest closed boundary for \mathcal{F} (the Shilov boundary)?

 $x \in X$ is in the Choquet boundary of \mathcal{F} if there is a **unique** Borel probability measure μ on X satisfying

$$f(x) = \int_X f d\mu, \quad f \in \mathcal{F}.$$

(the measure μ is then called a representing measure for x)

X compact metric space $\mathcal{F} \subset C(X)$ unital, norm-closed subalgebra that separates the points of X (a uniform algebra)

 $B \subset X$ is a boundary for \mathcal{F} if

$$||f|| = \max_{x \in B} |f(x)|, \quad f \in \mathcal{F}$$

If $Y \subset X$ is a closed boundary for \mathcal{F} , then the restriction $\rho_Y : \mathcal{F} \to C(Y)$ is isometric. We may view \mathcal{F} as a subalgebra of C(Y).

How can we find the smallest closed boundary for \mathcal{F} (the Shilov boundary)?

 $x \in X$ is in the Choquet boundary of \mathcal{F} if there is a **unique** Borel probability measure μ on X satisfying

$$f(x) = \int_X f d\mu, \quad f \in \mathcal{F}.$$

(the measure μ is then called a representing measure for x)

Theorem (Choquet, 1956)

Every point $x \in X$ admits a representing measure concentrated on the Choquet boundary of \mathcal{F} . In particular, the Choquet boundary is a boundary for \mathcal{F} .

 $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that f(x) = 1 and $\{x\} = \{z \in X : |f(z)| = 1\}.$

 $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that f(x) = 1 and $\{x\} = \{z \in X : |f(z)| = 1\}.$

Conclusion: a boundary always contains all the peak points.

 $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that f(x) = 1 and

 $\{x\} = \{z \in X : |f(z)| = 1\}.$

Conclusion: a boundary always contains all the peak points.

Theorem (Bishop, 1959)

The set of peak points coincides with the Choquet boundary.

・ロト ・四ト ・ヨト ・ヨン

 $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that f(x) = 1 and

$$\{x\} = \{z \in X : |f(z)| = 1\}.$$

Conclusion: a boundary always contains all the peak points.

Theorem (Bishop, 1959)

The set of peak points coincides with the Choquet boundary. In particular, the Choquet boundary is the smallest boundary.

 $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that f(x) = 1 and

 $\{x\} = \{z \in X : |f(z)| = 1\}.$

Conclusion: a boundary always contains all the peak points.

Theorem (Bishop, 1959)

The set of peak points coincides with the Choquet boundary. In particular, the Choquet boundary is the smallest boundary.

Conclusion: the Shilov boundary of \mathcal{F} is the closure of the Choquet boundary.

 ${\mathcal A}$ unital operator algebra

Is there a choice of (completely isometric) representation $\rho : \mathcal{A} \to B(\mathcal{H})$ for which the C*-algebra C*($\rho(\mathcal{A})$) is "smallest" possible?

 ${\mathcal A}$ unital operator algebra

Is there a choice of (completely isometric) representation $\rho : \mathcal{A} \to B(\mathcal{H})$ for which the C*-algebra C*($\rho(\mathcal{A})$) is "smallest" possible? (this would be a non-commutative analogue of the Shilov boundary)

・ロト ・回ト ・ヨト ・ヨト

 ${\mathcal A}$ unital operator algebra

Is there a choice of (completely isometric) representation $\rho : \mathcal{A} \to B(\mathcal{H})$ for which the C*-algebra C*($\rho(\mathcal{A})$) is "smallest" possible? (this would be a non-commutative analogue of the Shilov boundary)

Theorem (Hamana, 1979)

Yes – this is called the C^* -envelope.

 ${\mathcal A}$ unital operator algebra

Is there a choice of (completely isometric) representation $\rho : \mathcal{A} \to B(\mathcal{H})$ for which the C*-algebra C*($\rho(\mathcal{A})$) is "smallest" possible? (this would be a non-commutative analogue of the Shilov boundary)

Theorem (Hamana, 1979)

Yes – this is called the C^* -envelope.

How do we identify the C^{*}-envelope $C_e^*(\mathcal{A})$?

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if there is a unique unital positive extension to C(X) of the map $f \mapsto f(x)$ on \mathcal{F} .)

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if there is a unique unital positive extension to C(X) of the map $f \mapsto f(x)$ on \mathcal{F} .)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if there is a unique unital positive extension to C(X) of the map $f \mapsto f(x)$ on \mathcal{F} .)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra

An irreducible *-representation β of $C^*(\mathcal{A})$ is a boundary representation for \mathcal{A} if it has the unique extension property: β is the unique unital completely positive extension of $\beta|_{\mathcal{A}}$ to $C^*(\mathcal{A})$.

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if there is a unique unital positive extension to C(X) of the map $f \mapsto f(x)$ on \mathcal{F} .)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra

An irreducible *-representation β of $C^*(\mathcal{A})$ is a boundary representation for \mathcal{A} if it has the unique extension property: β is the unique unital completely positive extension of $\beta|_{\mathcal{A}}$ to $C^*(\mathcal{A})$.

Theorem (Arveson 1969, Muhly–Solel 1998, Dritschel–McCullough 2005, Arveson 2008, Davidson–Kennedy 2015)

Let $\mathcal{J} \subset C^*(\mathcal{A})$ denote the intersection of the kernels of all boundary representation for \mathcal{A} . Then, the C^{*}-envelope of \mathcal{A} is $C^*(\mathcal{A})/\mathcal{J}$.

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if there is a unique unital positive extension to C(X) of the map $f \mapsto f(x)$ on \mathcal{F} .)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra

An irreducible *-representation β of $C^*(\mathcal{A})$ is a boundary representation for \mathcal{A} if it has the unique extension property: β is the unique unital completely positive extension of $\beta|_{\mathcal{A}}$ to $C^*(\mathcal{A})$.

Theorem (Arveson 1969, Muhly–Solel 1998, Dritschel–McCullough 2005, Arveson 2008, Davidson–Kennedy 2015)

Let $\mathcal{J} \subset C^*(\mathcal{A})$ denote the intersection of the kernels of all boundary representation for \mathcal{A} . Then, the C^{*}-envelope of \mathcal{A} is $C^*(\mathcal{A})/\mathcal{J}$.

Roughly: The non-commutative Choquet boundary is a boundary for \mathcal{A} , and its closure is the non-commutative Shilov boundary.

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if there is a unique unital positive extension to C(X) of the map $f \mapsto f(x)$ on \mathcal{F} .)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra

An irreducible *-representation β of $C^*(\mathcal{A})$ is a boundary representation for \mathcal{A} if it has the unique extension property: β is the unique unital completely positive extension of $\beta|_{\mathcal{A}}$ to $C^*(\mathcal{A})$.

Theorem (Arveson 1969, Muhly–Solel 1998, Dritschel–McCullough 2005, Arveson 2008, Davidson–Kennedy 2015)

Let $\mathcal{J} \subset C^*(\mathcal{A})$ denote the intersection of the kernels of all boundary representation for \mathcal{A} . Then, the C^{*}-envelope of \mathcal{A} is $C^*(\mathcal{A})/\mathcal{J}$.

Roughly: The non-commutative Choquet boundary is a boundary for \mathcal{A} , and its closure is the non-commutative Shilov boundary.

"[...] one should probably not try to push the analogy too far." (Arveson, 1969)

・ロト ・日ト ・ヨト ・ヨト

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if there is a unique unital positive extension to C(X) of the map $f \mapsto f(x)$ on \mathcal{F} .)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra

An irreducible *-representation β of $C^*(\mathcal{A})$ is a boundary representation for \mathcal{A} if it has the unique extension property: β is the unique unital completely positive extension of $\beta|_{\mathcal{A}}$ to $C^*(\mathcal{A})$.

Theorem (Arveson 1969, Muhly–Solel 1998, Dritschel–McCullough 2005, Arveson 2008, Davidson–Kennedy 2015)

Let $\mathcal{J} \subset C^*(\mathcal{A})$ denote the intersection of the kernels of all boundary representation for \mathcal{A} . Then, the C^{*}-envelope of \mathcal{A} is $C^*(\mathcal{A})/\mathcal{J}$.

Roughly: The non-commutative Choquet boundary is a boundary for \mathcal{A} , and its closure is the non-commutative Shilov boundary.

"[...] one should probably not try to push the analogy too far." (Arveson, 1969)

Motivating question for this talk

What about non-commutative peak points?

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

・ロト ・回ト ・ヨト ・ヨト

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra

メロト メタト メヨト メヨト

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra What are the "points" here?

メロト メタト メヨト メヨト

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra What are the "points" here? Things bifurcate:

(A) The map $f \mapsto f(x)$ is an irreducible *-representation of C(X).

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra What are the "points" here? Things bifurcate:

(A) The map $f \mapsto f(x)$ is an irreducible *-representation of C(X). Hence, the non-commutative analogue of a point is an irreducible *-representation of $C^*(\mathcal{A})$.

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra What are the "points" here? Things bifurcate:

- (A) The map $f \mapsto f(x)$ is an irreducible *-representation of C(X). Hence, the non-commutative analogue of a point is an irreducible *-representation of $C^*(\mathcal{A})$.
- (B) The map $f \mapsto f(x)$ is a pure state of C(X).

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra What are the "points" here? Things bifurcate:

- (A) The map $f \mapsto f(x)$ is an irreducible *-representation of C(X). Hence, the non-commutative analogue of a point is an irreducible *-representation of $C^*(\mathcal{A})$.
- (B) The map $f \mapsto f(x)$ is a pure state of C(X). Hence, the non-commutative analogue of a point is a pure state of $C^*(\mathcal{A})$.

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra What are the "points" here? Things bifurcate:

- (A) The map $f \mapsto f(x)$ is an irreducible *-representation of C(X). Hence, the non-commutative analogue of a point is an irreducible *-representation of $C^*(\mathcal{A})$.
- (B) The map $f \mapsto f(x)$ is a pure state of C(X). Hence, the non-commutative analogue of a point is a pure state of $C^*(\mathcal{A})$.
- (C) The indicator function $\chi_{\{x\}}$ is a projection in $C(X)^{**}$.

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra What are the "points" here? Things bifurcate:

- (A) The map $f \mapsto f(x)$ is an irreducible *-representation of C(X). Hence, the non-commutative analogue of a point is an irreducible *-representation of $C^*(\mathcal{A})$.
- (B) The map $f \mapsto f(x)$ is a pure state of C(X). Hence, the non-commutative analogue of a point is a pure state of $C^*(\mathcal{A})$.
- (C) The indicator function $\chi_{\{x\}}$ is a projection in $C(X)^{**}$. Hence, the non-commutative analogue of a point is a (minimal, closed) projection in $C^*(\mathcal{A})^{**}$.

(日) (종) (종) (종) (종)
Going farther: what are non-commutative points?

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is a peak point for \mathcal{F} if there is $f \in \mathcal{F}$ with ||f|| = 1 such that $\{x\} = \{z \in X : |f(z)| = 1\}$.)

 $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra What are the "points" here? Things bifurcate:

- (A) The map $f \mapsto f(x)$ is an irreducible *-representation of C(X). Hence, the non-commutative analogue of a point is an irreducible *-representation of $C^*(\mathcal{A})$.
- (B) The map $f \mapsto f(x)$ is a pure state of C(X). Hence, the non-commutative analogue of a point is a pure state of $C^*(\mathcal{A})$.
- (C) The indicator function $\chi_{\{x\}}$ is a projection in $C(X)^{**}$. Hence, the non-commutative analogue of a point is a (minimal, closed) projection in $C^*(\mathcal{A})^{**}$.

All three interpretations are reasonable, and offer advantages over the others.

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Akemann's non-commutative topology: a projection $q \in C^*(\mathcal{A})^{**}$ is closed if it is the weak-* limit of a decreasing net of contractions in $C^*(\mathcal{A})$.

・ロト ・回ト ・ヨト ・ヨト

$\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Akemann's non-commutative topology: a projection $q \in C^*(\mathcal{A})^{**}$ is closed if it is the weak-* limit of a decreasing net of contractions in $C^*(\mathcal{A})$.

Definition (Hay, 2007)

A projection q is a peak projection for \mathcal{A} if there is a contraction $a \in \mathcal{A}$ such that aq = q and ||ap|| < 1 for every closed projection $p \in C^*(\mathcal{A})^{**}$ orthogonal to q.

$\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Akemann's non-commutative topology: a projection $q \in C^*(\mathcal{A})^{**}$ is closed if it is the weak-* limit of a decreasing net of contractions in $C^*(\mathcal{A})$.

Definition (Hay, 2007)

A projection q is a peak projection for \mathcal{A} if there is a contraction $a \in \mathcal{A}$ such that aq = q and ||ap|| < 1 for every closed projection $p \in C^*(\mathcal{A})^{**}$ orthogonal to q.

Theorem (Glicksberg, 1962)

Let \mathcal{F} be a uniform algebra on a compact metric space X. A closed set $E \subset X$ is a peak set for \mathcal{F} if and only if $\chi_E \in \mathcal{F}^{\perp \perp}$.

・ロト ・回ト ・ヨト ・ヨト

$\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Akemann's non-commutative topology: a projection $q \in C^*(\mathcal{A})^{**}$ is closed if it is the weak-* limit of a decreasing net of contractions in $C^*(\mathcal{A})$.

Definition (Hay, 2007)

A projection q is a peak projection for \mathcal{A} if there is a contraction $a \in \mathcal{A}$ such that aq = q and ||ap|| < 1 for every closed projection $p \in C^*(\mathcal{A})^{**}$ orthogonal to q.

Theorem (Glicksberg, 1962)

Let \mathcal{F} be a uniform algebra on a compact metric space X. A closed set $E \subset X$ is a peak set for \mathcal{F} if and only if $\chi_E \in \mathcal{F}^{\perp \perp}$.

Theorem (Blecher, Hay, Neal, Read, 2007–2012)

Assume that \mathcal{A} is separable. Then, a closed projection $q \in C^*(\mathcal{A})^{**}$ is a peak projection for \mathcal{A} if and only if $q \in \mathcal{A}^{\perp \perp}$.

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra, π irreducible *-representation of $C^*(\mathcal{A})$ $\mathcal{U}_{\pi} = \{\sigma \text{ irreducible }, \sigma \not\cong \pi\}.$

・ロト ・回ト ・ヨト ・ヨト

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra, π irreducible *-representation of $C^*(\mathcal{A})$ $\mathcal{U}_{\pi} = \{\sigma \text{ irreducible }, \sigma \not\cong \pi\}.$

Definition

We say that π is a

• peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that $\|\pi^{(n)}(A)\| > \|\sigma^{(n)}(A)\|$ for every $\sigma \in \mathcal{U}_{\pi}$;

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra, π irreducible *-representation of $C^*(\mathcal{A})$ $\mathcal{U}_{\pi} = \{\sigma \text{ irreducible }, \sigma \not\cong \pi\}.$

Definition

We say that π is a

- peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that $\|\pi^{(n)}(A)\| > \|\sigma^{(n)}(A)\|$ for every $\sigma \in \mathcal{U}_{\pi}$;
- strong peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that $\|\pi^{(n)}(A)\| > \sup_{\sigma \in \mathcal{U}_\pi} \|\sigma^{(n)}(A)\|.$

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra, π irreducible *-representation of $C^*(\mathcal{A})$ $\mathcal{U}_{\pi} = \{\sigma \text{ irreducible }, \sigma \not\cong \pi\}.$

Definition

We say that π is a

- peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that $\|\pi^{(n)}(A)\| > \|\sigma^{(n)}(A)\|$ for every $\sigma \in \mathcal{U}_{\pi}$;
- strong peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that $\|\pi^{(n)}(A)\| > \sup_{\sigma \in \mathcal{U}_\pi} \|\sigma^{(n)}(A)\|.$

If π is a peak representation, then ker $\sigma \subset \ker \pi$ implies that $\sigma \cong \pi$.

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra, π irreducible *-representation of $C^*(\mathcal{A})$ $\mathcal{U}_{\pi} = \{\sigma \text{ irreducible }, \sigma \not\cong \pi\}.$

Definition

We say that π is a

- peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that $\|\pi^{(n)}(A)\| > \|\sigma^{(n)}(A)\|$ for every $\sigma \in \mathcal{U}_{\pi}$;
- strong peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that $\|\pi^{(n)}(A)\| > \sup_{\sigma \in \mathcal{U}_\pi} \|\sigma^{(n)}(A)\|.$

If π is a peak representation, then ker $\sigma \subset \ker \pi$ implies that $\sigma \cong \pi$. If π is a strong peak representation, then $[\pi]$ is an isolated point of the spectrum.

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra, π irreducible *-representation of $C^*(\mathcal{A})$ $\mathcal{U}_{\pi} = \{\sigma \text{ irreducible }, \sigma \not\cong \pi\}.$

Definition

We say that π is a

- peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that $\|\pi^{(n)}(A)\| > \|\sigma^{(n)}(A)\|$ for every $\sigma \in \mathcal{U}_{\pi}$;
- strong peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that $\|\pi^{(n)}(A)\| > \sup_{\sigma \in \mathcal{U}_{\pi}} \|\sigma^{(n)}(A)\|.$

If π is a peak representation, then ker $\sigma \subset \ker \pi$ implies that $\sigma \cong \pi$. If π is a strong peak representation, then $[\pi]$ is an isolated point of the spectrum.

Definition

We say that π is a local peak representation for \mathcal{A} if there is $A \in \mathbb{M}_n(\mathcal{A})$ with the property that

$$\|\pi^{(n)}(A)\| > \|P_F\sigma^{(n)}(A)|_F\|$$

for every $\sigma \in \mathcal{U}_{\pi}$ and F finite-dimensional subspace.

An operator algebra is residually finite-dimensional (RFD) if it can be embedded inside of a product of matrix algebras.

An operator algebra is residually finite-dimensional (RFD) if it can be embedded inside of a product of matrix algebras.

Question

Let \mathcal{A} be a unital RFD operator algebra. When is $C_e^*(\mathcal{A})$ RFD?

An operator algebra is residually finite-dimensional (RFD) if it can be embedded inside of a product of matrix algebras.

Question

Let \mathcal{A} be a unital RFD operator algebra. When is $C_e^*(\mathcal{A})$ RFD? When does \mathcal{A} admit a finite-dimensional boundary representation?

An operator algebra is residually finite-dimensional (RFD) if it can be embedded inside of a product of matrix algebras.

Question

Let \mathcal{A} be a unital RFD operator algebra. When is $C_e^*(\mathcal{A})$ RFD? When does \mathcal{A} admit a finite-dimensional boundary representation?

If π is a *-representation, its support projection is the unique central projection $\mathfrak{s}_{\pi} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that ker $\pi^{**} = \mathrm{C}^*(\mathcal{A})^{**}(I - \mathfrak{s}_{\pi})$.

An operator algebra is residually finite-dimensional (RFD) if it can be embedded inside of a product of matrix algebras.

Question

Let \mathcal{A} be a unital RFD operator algebra. When is $C_e^*(\mathcal{A})$ RFD? When does \mathcal{A} admit a finite-dimensional boundary representation?

If π is a *-representation, its support projection is the unique central projection $\mathfrak{s}_{\pi} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that ker $\pi^{**} = \mathrm{C}^*(\mathcal{A})^{**}(I - \mathfrak{s}_{\pi})$.

Theorem (C.–Thompson 2020)

Let π be a finite-dimensional irreducible *-representation of $C^*(\mathcal{A})$. If \mathfrak{s}_{π} is a peak projection for \mathcal{A} , then π is necessarily a boundary representation and a local peak representation for \mathcal{A} .

An operator algebra is residually finite-dimensional (RFD) if it can be embedded inside of a product of matrix algebras.

Question

Let \mathcal{A} be a unital RFD operator algebra. When is $C_e^*(\mathcal{A})$ RFD? When does \mathcal{A} admit a finite-dimensional boundary representation?

If π is a *-representation, its support projection is the unique central projection $\mathfrak{s}_{\pi} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that ker $\pi^{**} = \mathrm{C}^*(\mathcal{A})^{**}(I - \mathfrak{s}_{\pi})$.

Theorem (C.–Thompson 2020)

Let π be a finite-dimensional irreducible *-representation of $C^*(\mathcal{A})$. If \mathfrak{s}_{π} is a peak projection for \mathcal{A} , then π is necessarily a boundary representation and a local peak representation for \mathcal{A} .

Theorem (C.–Thompson 2020)

Let $\mathcal{A} \subset \prod_{\lambda} \mathbb{M}_{n_{\lambda}}$ be a unital RFD operator algebra and let π be an irreducible *-representation that is a strong peak representation for \mathcal{A} . Then, π is a finite-dimensional boundary representation.

(ロ) (四) (三) (三)

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Definition

A state ω on $C^*(\mathcal{A})$ is a peak state for \mathcal{A} if there is $a \in \mathcal{A}$ such that $\omega(a^*a) = 1$ and $\varphi(a^*a) < 1$ for every state $\varphi \neq \omega$.

・ロト ・回ト ・ヨト ・ヨ

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Definition

A state ω on $C^*(\mathcal{A})$ is a peak state for \mathcal{A} if there is $a \in \mathcal{A}$ such that $\omega(a^*a) = 1$ and $\varphi(a^*a) < 1$ for every state $\varphi \neq \omega$.

If ω is a state, then its left support projection is the unique projection $\mathfrak{l}_{\omega} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that

 $C^*(\mathcal{A})^{**}(I - \mathfrak{l}_{\omega}) = \{\xi \in C^*(\mathcal{A})^{**} : \omega(\xi^*\xi) = 0\}.$

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Definition

A state ω on $C^*(\mathcal{A})$ is a peak state for \mathcal{A} if there is $a \in \mathcal{A}$ such that $\omega(a^*a) = 1$ and $\varphi(a^*a) < 1$ for every state $\varphi \neq \omega$.

If ω is a state, then its left support projection is the unique projection $\mathfrak{l}_{\omega} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that

$$C^*(\mathcal{A})^{**}(I - \mathfrak{l}_{\omega}) = \{\xi \in C^*(\mathcal{A})^{**} : \omega(\xi^*\xi) = 0\}.$$

Theorem (C.–Thompson 2022)

Let ω be a pure state on $C^*(\mathcal{A})$. Consider the following statements.

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Definition

A state ω on $C^*(\mathcal{A})$ is a peak state for \mathcal{A} if there is $a \in \mathcal{A}$ such that $\omega(a^*a) = 1$ and $\varphi(a^*a) < 1$ for every state $\varphi \neq \omega$.

If ω is a state, then its left support projection is the unique projection $\mathfrak{l}_{\omega} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that

$$C^*(\mathcal{A})^{**}(I - \mathfrak{l}_{\omega}) = \{\xi \in C^*(\mathcal{A})^{**} : \omega(\xi^*\xi) = 0\}.$$

Theorem (C.–Thompson 2022)

Let ω be a pure state on $C^*(\mathcal{A})$. Consider the following statements.

9 The left support projection of ω is a peak projection for \mathcal{A} .

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Definition

A state ω on $C^*(\mathcal{A})$ is a peak state for \mathcal{A} if there is $a \in \mathcal{A}$ such that $\omega(a^*a) = 1$ and $\varphi(a^*a) < 1$ for every state $\varphi \neq \omega$.

If ω is a state, then its left support projection is the unique projection $\mathfrak{l}_{\omega} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that

$$C^*(\mathcal{A})^{**}(I - \mathfrak{l}_{\omega}) = \{\xi \in C^*(\mathcal{A})^{**} : \omega(\xi^*\xi) = 0\}.$$

Theorem (C.–Thompson 2022)

Let ω be a pure state on $C^*(\mathcal{A})$. Consider the following statements.

- The left support projection of ω is a peak projection for \mathcal{A} .
- **2** The state ω is a peak state for \mathcal{A} .

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Definition

A state ω on $C^*(\mathcal{A})$ is a peak state for \mathcal{A} if there is $a \in \mathcal{A}$ such that $\omega(a^*a) = 1$ and $\varphi(a^*a) < 1$ for every state $\varphi \neq \omega$.

If ω is a state, then its left support projection is the unique projection $\mathfrak{l}_{\omega} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that

$$C^*(\mathcal{A})^{**}(I - \mathfrak{l}_{\omega}) = \{\xi \in C^*(\mathcal{A})^{**} : \omega(\xi^*\xi) = 0\}.$$

Theorem (C.–Thompson 2022)

Let ω be a pure state on $C^*(\mathcal{A})$. Consider the following statements.

- The left support projection of ω is a peak projection for \mathcal{A} .
- **2** The state ω is a peak state for \mathcal{A} .
- **③** The GNS representation of ω is a local peak representation for \mathcal{A} .

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Definition

A state ω on $C^*(\mathcal{A})$ is a peak state for \mathcal{A} if there is $a \in \mathcal{A}$ such that $\omega(a^*a) = 1$ and $\varphi(a^*a) < 1$ for every state $\varphi \neq \omega$.

If ω is a state, then its left support projection is the unique projection $\mathfrak{l}_{\omega} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that

$$C^*(\mathcal{A})^{**}(I - \mathfrak{l}_{\omega}) = \{\xi \in C^*(\mathcal{A})^{**} : \omega(\xi^*\xi) = 0\}.$$

Theorem (C.–Thompson 2022)

Let ω be a pure state on $C^*(\mathcal{A})$. Consider the following statements.

• The left support projection of ω is a peak projection for \mathcal{A} .

2 The state ω is a peak state for \mathcal{A} .

• The GNS representation of ω is a local peak representation for \mathcal{A} . Then, we have $(1) \Rightarrow (2) \Rightarrow (3)$.

 $\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Definition

A state ω on $C^*(\mathcal{A})$ is a peak state for \mathcal{A} if there is $a \in \mathcal{A}$ such that $\omega(a^*a) = 1$ and $\varphi(a^*a) < 1$ for every state $\varphi \neq \omega$.

If ω is a state, then its left support projection is the unique projection $\mathfrak{l}_{\omega} \in \mathrm{C}^*(\mathcal{A})^{**}$ such that

$$C^*(\mathcal{A})^{**}(I - \mathfrak{l}_{\omega}) = \{\xi \in C^*(\mathcal{A})^{**} : \omega(\xi^*\xi) = 0\}.$$

Theorem (C.–Thompson 2022)

Let ω be a pure state on $C^*(\mathcal{A})$. Consider the following statements.

• The left support projection of ω is a peak projection for \mathcal{A} .

2 The state ω is a peak state for \mathcal{A} .

• The GNS representation of ω is a local peak representation for \mathcal{A} . Then, we have $(1) \Rightarrow (2) \Rightarrow (3)$.

None of these implications can be reversed.

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if and only if it is a peak point.)

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if and only if it is a peak point.)

Theorem (C. – ongoing work)

Let $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra that has the factorization property inside of $C^*(\mathcal{A})$. Then, every pure state of $C^*(\mathcal{A})$ is a peak state for \mathcal{A} , and the support projection of every character of $C^*(\mathcal{A})$ is a peak projection for \mathcal{A} .

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if and only if it is a peak point.)

Theorem (C. – ongoing work)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a unital operator algebra that has the factorization property inside of $C^*(\mathcal{A})$. Then, every pure state of $C^*(\mathcal{A})$ is a peak state for \mathcal{A} , and the support projection of every character of $C^*(\mathcal{A})$ is a peak projection for \mathcal{A} .

Factorization property: for every invertible positive $t \in C^*(\mathcal{A})$ there is $b \in \mathcal{A}$ such that $t = b^*b$.

(Recall: given a uniform algebra $\mathcal{F} \subset C(X)$, a point $x \in X$ is in the Choquet boundary if and only if it is a peak point.)

Theorem (C. – ongoing work)

Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be a unital operator algebra that has the factorization property inside of $C^*(\mathcal{A})$. Then, every pure state of $C^*(\mathcal{A})$ is a peak state for \mathcal{A} , and the support projection of every character of $C^*(\mathcal{A})$ is a peak projection for \mathcal{A} .

Factorization property: for every invertible positive $t \in C^*(\mathcal{A})$ there is $b \in \mathcal{A}$ such that $t = b^*b$.

Examples:

- $\mathcal{T}_n \subset \mathbb{M}_n$ (Cholesky)
- $H^{\infty}(\mathbb{D}) \subset L^{\infty}(\mathbb{T},m)$
- Finite maximal subdiagonal algebras (Arveson, 1967)
- some nest algebras (Power, 1986)

$\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Arveson's hyperrigidity conjecture (2011)

Assume that every **irreducible** *-representation of $C^*(\mathcal{A})$ is a boundary representation for \mathcal{A} . Then, every *-representation enjoys the unique extension property with respect to \mathcal{A} .

$\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Arveson's hyperrigidity conjecture (2011)

Assume that every **irreducible** *-representation of $C^*(\mathcal{A})$ is a boundary representation for \mathcal{A} . Then, every *-representation enjoys the unique extension property with respect to \mathcal{A} .

This is still very much open, even when $C^*(\mathcal{A})$ is commutative.

$\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Arveson's hyperrigidity conjecture (2011)

Assume that every **irreducible** *-representation of $C^*(\mathcal{A})$ is a boundary representation for \mathcal{A} . Then, every *-representation enjoys the unique extension property with respect to \mathcal{A} .

This is still very much open, even when $C^*(\mathcal{A})$ is commutative.

X be a compact metric space, $\mathcal{F} \subset C(X)$ uniform algebra $\pi : C(X) \to B(\mathfrak{H})$ unital *-representation $\Pi : C(X) \to B(\mathfrak{H})$ unital completely positive map such that $\pi|_{\mathcal{F}} = \Pi|_{\mathcal{F}}$

$\mathcal{A} \subset B(\mathcal{H})$ unital operator algebra

Arveson's hyperrigidity conjecture (2011)

Assume that every **irreducible** *-representation of $C^*(\mathcal{A})$ is a boundary representation for \mathcal{A} . Then, every *-representation enjoys the unique extension property with respect to \mathcal{A} .

This is still very much open, even when $C^*(\mathcal{A})$ is commutative.

X be a compact metric space, $\mathcal{F} \subset C(X)$ uniform algebra $\pi : C(X) \to B(\mathfrak{H})$ unital *-representation $\Pi : C(X) \to B(\mathfrak{H})$ unital completely positive map such that $\pi|_{\mathcal{F}} = \Pi|_{\mathcal{F}}$

Arveson's local hyperrigidity theorem (2011)

Let $x \in X$ be a point in the Choquet boundary of \mathcal{F} . Then,

$$\lim_{\delta \to 0} \|(\pi(f) - \Pi(f)) E_{\pi}(B(x, \delta))\| = 0, \quad f \in \mathcal{C}(X).$$

General local hyperrigidity

X compact metric space, $\mathcal{F} \subset \mathcal{C}(X)$ uniform algebra $x \in X$ point in the Choquet boundary of \mathcal{F}

・ロト ・回ト ・ヨト ・ヨト

General local hyperrigidity

X compact metric space, $\mathcal{F} \subset C(X)$ uniform algebra $x \in X$ point in the Choquet boundary of \mathcal{F}

There is a function $\varphi \in \mathcal{F}$ with the property that

 $|\varphi(y)| < \varphi(x) = 1$

for each $y \in X, y \neq x$.

General local hyperrigidity

X compact metric space, $\mathcal{F} \subset \mathcal{C}(X)$ uniform algebra $x \in X$ point in the Choquet boundary of \mathcal{F}

There is a function $\varphi \in \mathcal{F}$ with the property that

 $|\varphi(y)| < \varphi(x) = 1$

for each $y \in X, y \neq x$.

Key observation

 $\lim_{n\to\infty} \|\varphi^n f\| = |f(x)| \text{ for every } f \in \mathcal{C}(X).$

・ロト ・回ト ・ヨト ・ヨト
General local hyperrigidity

X compact metric space, $\mathcal{F} \subset \mathcal{C}(X)$ uniform algebra $x \in X$ point in the Choquet boundary of \mathcal{F}

There is a function $\varphi \in \mathcal{F}$ with the property that

 $|\varphi(y)| < \varphi(x) = 1$

for each $y \in X, y \neq x$.

Key observation

 $\lim_{n\to\infty} \|\varphi^n f\| = |f(x)| \text{ for every } f \in \mathcal{C}(X).$

Theorem (C. 2018, 2022)

Let $\mathcal{A} \subset B(\mathcal{H})$ be a unital operator algebra and let π be a unital *-representation of $C^*(\mathcal{A})$. If $\omega : C^*(\mathcal{A}) \to \mathbb{C}$ is a peak state for \mathcal{A} , then then π has the "local" unique extension property at ω .

イロト イヨト イヨト イヨト

Thank you!

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・