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This talk is based on work from several projects, some of which joint with Ian
Thompson.
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The classical case: uniform algebras
X compact metric space
F ⊂ C(X) unital, norm-closed subalgebra that separates the points of X

(a uniform algebra)

B ⊂ X is a boundary for F if

‖f‖ = max
x∈B
|f(x)|, f ∈ F

If Y ⊂ X is a closed boundary for F , then the restriction ρY : F → C(Y ) is
isometric. We may view F as a subalgebra of C(Y ).

How can we find the smallest closed boundary for F (the Shilov boundary)?

x ∈ X is in the Choquet boundary of F if there is a unique Borel probability
measure µ on X satisfying

f(x) =

∫
X

fdµ, f ∈ F .

(the measure µ is then called a representing measure for x)

Theorem (Choquet, 1956)

Every point x ∈ X admits a representing measure concentrated on the Choquet
boundary of F . In particular, the Choquet boundary is a boundary for F .
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The connection between the Choquet and Shilov boundaries

x ∈ X is a peak point for F if there is f ∈ F with ‖f‖ = 1 such that f(x) = 1 and

{x} = {z ∈ X : |f(z)| = 1}.

Conclusion: a boundary always contains all the peak points.

Theorem (Bishop, 1959)

The set of peak points coincides with the Choquet boundary. In particular, the
Choquet boundary is the smallest boundary.

Conclusion: the Shilov boundary of F is the closure of the Choquet boundary.
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R. Clouâtre (University of Manitoba) NC peak points NCAT 2022 4 / 15



The connection between the Choquet and Shilov boundaries

x ∈ X is a peak point for F if there is f ∈ F with ‖f‖ = 1 such that f(x) = 1 and

{x} = {z ∈ X : |f(z)| = 1}.

Conclusion: a boundary always contains all the peak points.

Theorem (Bishop, 1959)

The set of peak points coincides with the Choquet boundary. In particular, the
Choquet boundary is the smallest boundary.

Conclusion: the Shilov boundary of F is the closure of the Choquet boundary.
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Operator algebras and C∗-envelopes

A unital operator algebra

Is there a choice of (completely isometric) representation ρ : A → B(H) for which the
C∗-algebra C∗(ρ(A)) is “smallest” possible?

(this would be a non-commutative analogue of the Shilov boundary)

Theorem (Hamana, 1979)

Yes – this is called the C∗-envelope.

How do we identify the C∗-envelope C∗e(A)?
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Non-commutative uniform algebra theory
(Recall: given a uniform algebra F ⊂ C(X), a point x ∈ X is in the Choquet
boundary if there is a unique unital positive extension to C(X) of the map f 7→ f(x)
on F .)

A ⊂ B(H) be a unital operator algebra

An irreducible ∗-representation β of C∗(A) is a boundary representation for A if it
has the unique extension property: β is the unique unital completely positive
extension of β|A to C∗(A).

Theorem (Arveson 1969, Muhly–Solel 1998, Dritschel–McCullough 2005,
Arveson 2008, Davidson–Kennedy 2015)

Let J ⊂ C∗(A) denote the intersection of the kernels of all boundary representation
for A. Then, the C∗-envelope of A is C∗(A)/J .

Roughly: The non-commutative Choquet boundary is a boundary for A, and its
closure is the non-commutative Shilov boundary.

“[...] one should probably not try to push the analogy too far.” (Arveson, 1969)

Motivating question for this talk

What about non-commutative peak points?
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Going farther: what are non-commutative points?

(Recall: given a uniform algebra F ⊂ C(X), a point x ∈ X is a peak point for F if
there is f ∈ F with ‖f‖ = 1 such that {x} = {z ∈ X : |f(z)| = 1}.)

A ⊂ B(H) be a unital operator algebra
What are the “points” here? Things bifurcate:

(A) The map f 7→ f(x) is an irreducible ∗-representation of C(X). Hence, the
non-commutative analogue of a point is an irreducible ∗-representation of C∗(A).

(B) The map f 7→ f(x) is a pure state of C(X). Hence, the non-commutative
analogue of a point is a pure state of C∗(A).

(C) The indicator function χ{x} is a projection in C(X)∗∗. Hence, the
non-commutative analogue of a point is a (minimal, closed) projection in
C∗(A)∗∗.

All three interpretations are reasonable, and offer advantages over the others.
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(A) The map f 7→ f(x) is an irreducible ∗-representation of C(X). Hence, the
non-commutative analogue of a point is an irreducible ∗-representation of C∗(A).

(B) The map f 7→ f(x) is a pure state of C(X). Hence, the non-commutative
analogue of a point is a pure state of C∗(A).

(C) The indicator function χ{x} is a projection in C(X)∗∗. Hence, the
non-commutative analogue of a point is a (minimal, closed) projection in
C∗(A)∗∗.

All three interpretations are reasonable, and offer advantages over the others.
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Peak projections

A ⊂ B(H) unital operator algebra

Akemann’s non-commutative topology: a projection q ∈ C∗(A)∗∗ is closed if it is the
weak-∗ limit of a decreasing net of contractions in C∗(A).

Definition (Hay, 2007)

A projection q is a peak projection for A if there is a contraction a ∈ A such that
aq = q and ‖ap‖ < 1 for every closed projection p ∈ C∗(A)∗∗ orthogonal to q.

Theorem (Glicksberg, 1962)

Let F be a uniform algebra on a compact metric space X. A closed set E ⊂ X is a
peak set for F if and only if χE ∈ F⊥⊥.

Theorem (Blecher, Hay, Neal, Read, 2007–2012)

Assume that A is separable. Then, a closed projection q ∈ C∗(A)∗∗ is a peak
projection for A if and only if q ∈ A⊥⊥.
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Peak representations

A ⊂ B(H) unital operator algebra, π irreducible ∗-representation of C∗(A)
Uπ = {σ irreducible , σ 6∼= π}.

Definition

We say that π is a

peak representation for A if there is A ∈ Mn(A) with the property that
‖π(n)(A)‖ > ‖σ(n)(A)‖ for every σ ∈ Uπ;

strong peak representation for A if there is A ∈ Mn(A) with the property that
‖π(n)(A)‖ > supσ∈Uπ ‖σ

(n)(A)‖.

If π is a peak representation, then kerσ ⊂ kerπ implies that σ ∼= π.
If π is a strong peak representation, then [π] is an isolated point of the spectrum.

Definition

We say that π is a local peak representation for A if there is A ∈ Mn(A) with the
property that

‖π(n)(A)‖ > ‖PFσ(n)(A)|F ‖

for every σ ∈ Uπ and F finite-dimensional subspace.
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Application: residually finite-dimensional C∗-envelopes

An operator algebra is residually finite-dimensional (RFD) if it can be embedded
inside of a product of matrix algebras.

Question

Let A be a unital RFD operator algebra. When is C∗e(A) RFD? When does A admit
a finite-dimensional boundary representation?

If π is a ∗-representation, its support projection is the unique central projection
sπ ∈ C∗(A)∗∗ such that kerπ∗∗ = C∗(A)∗∗(I − sπ).

Theorem (C.–Thompson 2020)

Let π be a finite-dimensional irreducible ∗-representation of C∗(A). If sπ is a peak
projection for A, then π is necessarily a boundary representation and a local peak
representation for A.

Theorem (C.–Thompson 2020)

Let A ⊂
∏
λMnλ be a unital RFD operator algebra and let π be an irreducible

∗-representation that is a strong peak representation for A. Then, π is a
finite-dimensional boundary representation.
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Peak states

A ⊂ B(H) unital operator algebra

Definition

A state ω on C∗(A) is a peak state for A if there is a ∈ A such that ω(a∗a) = 1 and
ϕ(a∗a) < 1 for every state ϕ 6= ω.

If ω is a state, then its left support projection is the unique projection lω ∈ C∗(A)∗∗

such that
C∗(A)∗∗(I − lω) = {ξ ∈ C∗(A)∗∗ : ω(ξ∗ξ) = 0}.

Theorem (C.–Thompson 2022)

Let ω be a pure state on C∗(A). Consider the following statements.

(1) The left support projection of ω is a peak projection for A.

(2) The state ω is a peak state for A.

(3) The GNS representation of ω is a local peak representation for A.

Then, we have (1)⇒ (2)⇒ (3).

None of these implications can be reversed.
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R. Clouâtre (University of Manitoba) NC peak points NCAT 2022 11 / 15



A noncommutative analogue of Bishop’s theorem

(Recall: given a uniform algebra F ⊂ C(X), a point x ∈ X is in the Choquet
boundary if and only if it is a peak point.)

Theorem (C. – ongoing work)

Let A ⊂ B(H) be a unital operator algebra that has the factorization property inside
of C∗(A). Then, every pure state of C∗(A) is a peak state for A, and the support
projection of every character of C∗(A) is a peak projection for A.

Factorization property: for every invertible positive t ∈ C∗(A) there is b ∈ A such
that t = b∗b.
Examples:

Tn ⊂ Mn (Cholesky)

H∞(D) ⊂ L∞(T,m)

Finite maximal subdiagonal algebras (Arveson, 1967)

some nest algebras (Power, 1986)
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Application: the hyperrigidity conjecture

A ⊂ B(H) unital operator algebra

Arveson’s hyperrigidity conjecture (2011)

Assume that every irreducible ∗-representation of C∗(A) is a boundary
representation for A. Then, every ∗-representation enjoys the unique extension
property with respect to A.

This is still very much open, even when C∗(A) is commutative.

X be a compact metric space, F ⊂ C(X) uniform algebra
π : C(X)→ B(H) unital ∗-representation
Π : C(X)→ B(H) unital completely positive map such that π|F = Π|F

Arveson’s local hyperrigidity theorem (2011)

Let x ∈ X be a point in the Choquet boundary of F . Then,

lim
δ→0
‖(π(f)−Π(f))Eπ(B(x, δ))‖ = 0, f ∈ C(X).
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General local hyperrigidity

X compact metric space, F ⊂ C(X) uniform algebra
x ∈ X point in the Choquet boundary of F

There is a function ϕ ∈ F with the property that

|ϕ(y)| < ϕ(x) = 1

for each y ∈ X, y 6= x.

Key observation

limn→∞ ‖ϕnf‖ = |f(x)| for every f ∈ C(X).

Theorem (C. 2018, 2022)

Let A ⊂ B(H) be a unital operator algebra and let π be a unital ∗-representation of
C∗(A). If ω : C∗(A)→ C is a peak state for A, then then π has the “local” unique
extension property at ω.
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R. Clouâtre (University of Manitoba) NC peak points NCAT 2022 14 / 15



General local hyperrigidity

X compact metric space, F ⊂ C(X) uniform algebra
x ∈ X point in the Choquet boundary of F

There is a function ϕ ∈ F with the property that

|ϕ(y)| < ϕ(x) = 1

for each y ∈ X, y 6= x.

Key observation

limn→∞ ‖ϕnf‖ = |f(x)| for every f ∈ C(X).

Theorem (C. 2018, 2022)

Let A ⊂ B(H) be a unital operator algebra and let π be a unital ∗-representation of
C∗(A). If ω : C∗(A)→ C is a peak state for A, then then π has the “local” unique
extension property at ω.
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Thank you!
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