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This talk is based on work from several projects, some of which joint with Ian
Thompson.




The classical case: uniform algebras

X compact metric space
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The classical case: uniform algebras
X compact metric space

F C C(X) unital, norm-closed subalgebra that separates the points of X
(a uniform algebra)

B C X is a boundary for F if
Ifll = max|f ()|, feF

If Y C X is a closed boundary for F, then the restriction py : F — C(Y) is
isometric. We may view F as a subalgebra of C(Y).

How can we find the smallest closed boundary for F (the Shilov boundary)?

z € X is in the Choquet boundary of F if there is a unique Borel probability
measure p on X satisfying

f@ = [ fdu fer.
b'e
(the measure p is then called a representing measure for x)

Theorem (Choquet, 1956)

Every point © € X admits a representing measure concentrated on the Choquet
boundary of F. In particular, the Choquet boundary is a boundary for F.

R. Clouatre (University of Manitoba) NC peak points NCAT 2022 3/15



The connection between the Choquet and Shilov boundaries

x € X is a peak point for F if there is f € F with || f|| = 1 such that f(z) =1 and

{e} ={z e X:[f(2)| = 1}.
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The connection between the Choquet and Shilov boundaries

x € X is a peak point for F if there is f € F with || f|| = 1 such that f(z) =1 and

{e} ={z e X:[f(2)| = 1}.

Conclusion: a boundary always contains all the peak points.

Theorem (Bishop, 1959)

The set of peak points coincides with the Choquet boundary. In particular, the
Choquet boundary is the smallest boundary.

Conclusion: the Shilov boundary of F is the closure of the Choquet boundary.
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Operator algebras and C*-envelopes

A unital operator algebra

Is there a choice of (completely isometric) representation p : A — B(H) for which the
C*-algebra C*(p(A)) is “smallest” possible?
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Operator algebras and C*-envelopes

A unital operator algebra

Is there a choice of (completely isometric) representation p : A — B(H) for which the
C*-algebra C*(p(A)) is “smallest” possible?
(this would be a non-commutative analogue of the Shilov boundary)

Theorem (Hamana, 1979)
Yes — this is called the C*-envelope. J

How do we identify the C*-envelope C7(.A)?
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Non-commutative uniform algebra theory

(Recall: given a uniform algebra F C C(X), a point z € X is in the Choquet

boundary if there is a unique unital positive extension to C(X) of the map f +— f(z)
on F.)
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Non-commutative uniform algebra theory

(Recall: given a uniform algebra F C C(X), a point « € X is in the Choquet
boundary if there is a unique unital positive extension to C(X) of the map f — f(x)
on F.)

A C B(H) be a unital operator algebra

An irreducible x-representation 8 of C*(A) is a boundary representation for A if it
has the unique extension property: S is the unique unital completely positive
extension of 8|4 to C*(A).

Theorem (Arveson 1969, Muhly—Solel 1998, Dritschel-McCullough 2005,
Arveson 2008, Davidson—Kennedy 2015)

Let J C C*(A) denote the intersection of the kernels of all boundary representation
for A. Then, the C*-envelope of A is C*(A)/T.

Roughly: The non-commutative Choquet boundary is a boundary for A, and its
closure is the non-commutative Shilov boundary.

“[...] one should probably not try to push the analogy too far.” (Arveson, 1969)

What about non-commutative peak points?

Motivating question for this talk J
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Going farther: what are non-commutative points?

(Recall: given a uniform algebra F C C(X), a point = € X is a peak point for F if
there is f € F with [|f|| = 1 such that {z} = {z € X : |f(2)| = 1}.)
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Going farther: what are non-commutative points?

(Recall: given a uniform algebra F C C(X), a point = € X is a peak point for F if
there is f € F with || f]] = 1 such that {z} = {z € X : |f(2)| = 1}.)

A C B(H) be a unital operator algebra
What are the “points” here? Things bifurcate:

(A) The map f — f(z) is an irreducible *-representation of C(X). Hence, the
non-commutative analogue of a point is an irreducible *-representation of C*(A).

(B) The map f — f(z) is a pure state of C(X). Hence, the non-commutative
analogue of a point is a pure state of C*(A).

(C) The indicator function x¢, is a projection in C(X)**. Hence, the
non-commutative analogue of a point is a (minimal, closed) projection in

Cr(A)*.

All three interpretations are reasonable, and offer advantages over the others.
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Peak projections

A C B(H) unital operator algebra

Akemann’s non-commutative topology: a projection g € C*(A)** is closed if it is the
weak-* limit of a decreasing net of contractions in C*(A).
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Akemann’s non-commutative topology: a projection g € C*(A)** is closed if it is the
weak-* limit of a decreasing net of contractions in C*(A).

Definition (Hay, 2007)

A projection g is a peak projection for A if there is a contraction a € A such that
aq = q and ||ap|| < 1 for every closed projection p € C*(A)** orthogonal to g.
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Peak projections

A C B(H) unital operator algebra

Akemann’s non-commutative topology: a projection g € C*(A)** is closed if it is the
weak-* limit of a decreasing net of contractions in C*(A).

Definition (Hay, 2007)

A projection g is a peak projection for A if there is a contraction a € A such that
aq = q and ||ap|| < 1 for every closed projection p € C*(A)** orthogonal to g.

Theorem (Glicksberg, 1962)

Let F be a uniform algebra on a compact metric space X. A closed set E C X is a
peak set for F if and only if xg € F-+.

Theorem (Blecher, Hay, Neal, Read, 2007-2012)

Assume that A is separable. Then, a closed projection q € C*(A)** is a peak
projection for A if and only if g € AT+,
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Peak representations

A C B(H) unital operator algebra, 7 irreducible *-representation of C*(.A)
Ur = {o irreducible ,o ¥ 7}.
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Definition
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Peak representations

A C B(H) unital operator algebra, 7 irreducible *-representation of C*(.A)
Ur = {o irreducible ,o ¥ 7}.

Definition

We say that 7 is a

@ peak representation for A if there is A € M, (A) with the property that
7™ (A)]| > o™ (A)]|| for every o € Uy;

e strong peak representation for A if there is A € M, (.A) with the property that
7™ (A)]| > sup, ey, 16 (A)]]-

If 7 is a peak representation, then ker o C ker 7 implies that o 2 7.
If 7 is a strong peak representation, then [r] is an isolated point of the spectrum.

Definition

We say that 7 is a local peak representation for A if there is A € M, (A) with the
property that
Ix ™ (A > [|1Pro™ (A)|r|

for every o € U, and F' finite-dimensional subspace.
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Application: residually finite-dimensional C*-envelopes

An operator algebra is residually finite-dimensional (RFD) if it can be embedded
inside of a product of matrix algebras.
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Application: residually finite-dimensional C*-envelopes

An operator algebra is residually finite-dimensional (RFD) if it can be embedded
inside of a product of matrix algebras.
Question

Let A be a unital RFD operator algebra. When is C;(A) RFD? When does A admit
a finite-dimensional boundary representation?

If 7 is a *-representation, its support projection is the unique central projection
sr € C*(A)™ such that ker 7** = C*(A)"* (I — ).

Theorem (C.—Thompson 2020)

Let 7 be a finite-dimensional irreducible x-representation of C*(A). If sx is a peak
projection for A, then w is necessarily a boundary representation and a local peak
representation for A.
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Application: residually finite-dimensional C*-envelopes

An operator algebra is residually finite-dimensional (RFD) if it can be embedded
inside of a product of matrix algebras.

Question

Let A be a unital RFD operator algebra. When is C;(A) RFD? When does A admit
a finite-dimensional boundary representation?

If 7 is a *-representation, its support projection is the unique central projection
sy € C*(A)™ such that ker7** = C*(A)** (I — sx).

Theorem (C.—Thompson 2020)

Let 7 be a finite-dimensional irreducible x-representation of C*(A). If sx is a peak
projection for A, then 7 is necessarily a boundary representation and a local peak
representation for A.

Theorem (C.—Thompson 2020)

Let A C [\ Mn, be a unital RFD operator algebra and let w be an irreducible
x-representation that is a strong peak representation for A. Then, 7 is a
finite-dimensional boundary representation.
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Peak states
A C B(H) unital operator algebra

Definition

A state w on C*(A) is a peak state for A if there is a € A such that w(a*a) =1 and
p(a*a) < 1 for every state ¢ # w.

(University of Manitoba) NC peak points



Peak states
A C B(H) unital operator algebra

Definition

A state w on C*(A) is a peak state for A if there is a € A such that w(a*a) = 1 and
p(a*a) < 1 for every state ¢ # w.

If w is a state, then its left support projection is the unique projection I, € C*(A)**
such that

CH A" (I - L) ={£ € C"(A) : w(£7¢) = 0}
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A C B(H) unital operator algebra

Definition

A state w on C*(A) is a peak state for A if there is a € A such that w(a*a) = 1 and
p(a*a) < 1 for every state ¢ # w.

If w is a state, then its left support projection is the unique projection [, € C*(A)**
such that

CH A" (I - L) ={£ € C"(A) : w(£7¢) = 0}

Theorem (C.—Thompson 2022)

Let w be a pure state on C*(A). Consider the following statements.
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Peak states
A C B(H) unital operator algebra

Definition

A state w on C*(A) is a peak state for A if there is a € A such that w(a*a) = 1 and
p(a*a) < 1 for every state ¢ # w.

If w is a state, then its left support projection is the unique projection [, € C*(A)**
such that

CH A" (I - L) ={£ € C"(A) : w(£7¢) = 0}

Theorem (C.—Thompson 2022)

Let w be a pure state on C*(A). Consider the following statements.

Q@ The left support projection of w is a peak projection for A.
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Peak states
A C B(H) unital operator algebra

Definition

A state w on C*(A) is a peak state for A if there is a € A such that w(a*a) = 1 and
p(a*a) < 1 for every state ¢ # w.

If w is a state, then its left support projection is the unique projection [, € C*(A)**
such that

CH A" (I - L) ={£ € C"(A) : w(£7¢) = 0}

Theorem (C.—Thompson 2022)

Let w be a pure state on C*(A). Consider the following statements.
Q@ The left support projection of w is a peak projection for A.
@ The state w is a peak state for A.
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Peak states
A C B(H) unital operator algebra

Definition

A state w on C*(A) is a peak state for A if there is a € A such that w(a*a) = 1 and
p(a*a) < 1 for every state ¢ # w.

If w is a state, then its left support projection is the unique projection [, € C*(A)**
such that

CH A" (I - L) ={£ € C"(A) : w(£7¢) = 0}

Theorem (C.—Thompson 2022)

Let w be a pure state on C*(A). Consider the following statements.
Q@ The left support projection of w is a peak projection for A.

@ The state w is a peak state for A.

@ The GNS representation of w is a local peak representation for A.
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Peak states
A C B(H) unital operator algebra

Definition

A state w on C*(A) is a peak state for A if there is a € A such that w(a*a) = 1 and
p(a*a) < 1 for every state ¢ # w.

If w is a state, then its left support projection is the unique projection [, € C*(A)**
such that

CH A" (I - L) ={£ € C"(A) : w(£7¢) = 0}

Theorem (C.—Thompson 2022)

Let w be a pure state on C*(A). Consider the following statements.

Q@ The left support projection of w is a peak projection for A.

@ The state w is a peak state for A.

@ The GNS representation of w is a local peak representation for A.
Then, we have (1) = (2) = (3).
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Peak states

A C B(H) unital operator algebra

Definition

A state w on C*(A) is a peak state for A if there is a € A such that w(a*a) = 1 and
p(a*a) < 1 for every state ¢ # w.

If w is a state, then its left support projection is the unique projection [, € C*(A)**
such that
CH A (I - L) ={£ € C"(A)™ 1 w(£7€) = 0}.

Theorem (C.—Thompson 2022)

Let w be a pure state on C*(A). Consider the following statements.

Q@ The left support projection of w is a peak projection for A.

@ The state w is a peak state for A.

@ The GNS representation of w is a local peak representation for A.
Then, we have (1) = (2) = (3).

None of these implications can be reversed.
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A noncommutative analogue of Bishop’s theorem

(Recall: given a uniform algebra F C C(X), a point z € X is in the Choquet
boundary if and only if it is a peak point.)
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A noncommutative analogue of Bishop’s theorem

(Recall: given a uniform algebra F C C(X), a point z € X is in the Choquet
boundary if and only if it is a peak point.)

Theorem (C. — ongoing work)

Let A C B(H) be a unital operator algebra that has the factorization property inside
of C*(A). Then, every pure state of C*(A) is a peak state for A, and the support
projection of every character of C*(A) is a peak projection for A.
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(Recall: given a uniform algebra F C C(X), a point z € X is in the Choquet
boundary if and only if it is a peak point.)

Theorem (C. — ongoing work)

Let A C B(H) be a unital operator algebra that has the factorization property inside
of C*(A). Then, every pure state of C*(A) is a peak state for A, and the support
projection of every character of C*(A) is a peak projection for A.

Factorization property: for every invertible positive t € C*(.A) there is b € A such
that ¢ = b*b.
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A noncommutative analogue of Bishop’s theorem

(Recall: given a uniform algebra F C C(X), a point z € X is in the Choquet
boundary if and only if it is a peak point.)

Theorem (C. — ongoing work)

Let A C B(H) be a unital operator algebra that has the factorization property inside
of C*(A). Then, every pure state of C*(A) is a peak state for A, and the support
projection of every character of C*(A) is a peak projection for A.

Factorization property: for every invertible positive t € C*(.A) there is b € A such
that ¢ = b*b.
Examples:

e 7, C M, (Cholesky)
H> (D) C L>=(T,m)

o Finite maximal subdiagonal algebras (Arveson, 1967)

e some nest algebras (Power, 1986)
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Application: the hyperrigidity conjecture

A C B(#) unital operator algebra

Arveson’s hyperrigidity conjecture (2011)

Assume that every irreducible x-representation of C*(.A) is a boundary
representation for A. Then, every *-representation enjoys the unique extension
property with respect to A.
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Arveson’s hyperrigidity conjecture (2011)

Assume that every irreducible x-representation of C*(.A) is a boundary
representation for .A. Then, every *-representation enjoys the unique extension
property with respect to A.

This is still very much open, even when C*(A) is commutative.
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Application: the hyperrigidity conjecture

A C B(#) unital operator algebra

Arveson’s hyperrigidity conjecture (2011)

Assume that every irreducible x-representation of C*(.A) is a boundary
representation for .A. Then, every *-representation enjoys the unique extension
property with respect to A.

This is still very much open, even when C*(A) is commutative.

X be a compact metric space, F C C(X) uniform algebra
7w : C(X) — B($) unital *-representation
IT: C(X) — B($) unital completely positive map such that 7| = II|#
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Application: the hyperrigidity conjecture

A C B(#) unital operator algebra

Arveson’s hyperrigidity conjecture (2011)

Assume that every irreducible x-representation of C*(.A) is a boundary
representation for A. Then, every #-representation enjoys the unique extension
property with respect to A.

This is still very much open, even when C*(A) is commutative.

X be a compact metric space, F C C(X) uniform algebra

7w : C(X) — B($) unital *-representation

IT: C(X) — B($) unital completely positive map such that 7| = II|»
Arveson’s local hyperrigidity theorem (2011)

Let x € X be a point in the Choquet boundary of F. Then,

lim [[(7(f) = TL() B=(B(2,9)) =0, f € C(X).
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General local hyperrigidity

X compact metric space, F C C(X) uniform algebra
z € X point in the Choquet boundary of F
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General local hyperrigidity

X compact metric space, 7 C C(X) uniform algebra
z € X point in the Choquet boundary of F

There is a function ¢ € F with the property that

ley)] < p(z) =1

for each y € X,y # x.
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General local hyperrigidity

X compact metric space, F C C(X) uniform algebra
z € X point in the Choquet boundary of F

There is a function ¢ € F with the property that
lp(y)] < p(x) =1
for each y € X,y # x.

Key observation
limsoe o™ £ = |£(@)] for every f € C(X). J
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General local hyperrigidity

X compact metric space, 7 C C(X) uniform algebra
z € X point in the Choquet boundary of F

There is a function ¢ € F with the property that
le(y)| < o(z) =1
for eachy € X,y # x.

Key observation
limy o0 [l@" fl| = |f(2)] for every f € C(X).

Theorem (C. 2018, 2022)

Let A C B(H) be a unital operator algebra and let ™ be a unital x-representation of
C*(A). Ifw: C*(A) — C is a peak state for A, then then m has the “local” unique
extension property at w.
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Thank you!




