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Outline

We recall the concept of a self-similar groupoid action (G,E) on the path space of a finite
graph with examples.

We describe the structure of the associated C∗-algebra C∗(G,E) and mention some
properties of the Exel-Pardo étale groupoid G(G,E).

We review some facts about skew products and semi-direct products of groupoids, and
prove a kind of Takai duality.

We indicate how to compute the Crainic-Moerdijk homology of G(G,E) in some cases,
and compare it with the K-theory of C∗(G,E).

We introduce the Higman-Thompson group associated to (G,E) using G-tables and relate
it to the topological full group of G(G,E), which is isomorphic to a subgroup of unitaries
in the algebra C∗(G,E).
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Graphs and trees

Let E = (E0,E1, r, s) be a finite directed graph with no sources.

u v w

e2

e3

e4

e5

e6

e1

The set of paths of length k is

Ek = {e1e2 · · · ek : ei ∈ E1, r(ei+1) = s(ei)}.

The space of finite paths is E∗ :=
⋃
k≥0

Ek and E∞ is the infinite path space with the

topology given by Z(α) = {αξ : ξ ∈ E∞} for α ∈ E∗.

The set E∗ is indexing the vertices of a forest TE , where the level n has |En| vertices.
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Graphs and trees

The forest TE looks like

u v w

e1 e3

e1e1...

e1e3...

e3e2...

e3e6...

e2 e6

e2e1...

e2e3...

e6e4...

e6e5...

e4 e5

e4e2...

e4e6...

e5e2...

e5e6...

A partial isomorphism of TE is given by a bijection g : u1E∗ → u2E∗ preserving length
and such that g · (αe) ∈ (g · α)E1 for α ∈ Ek and e ∈ E1.

The set PIso(TE) forms a discrete groupoid with unit space E0.

In this example, PIso(TE) is transitive, but it could happen that there is no bijection
g : u1E∗ → u2E∗ for u1 6= u2.

PIso(TE) could be a group bundle. If |E0| = 1, then PIso(TE) =Aut(TE) is a group.
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Graphs and trees

Let E be the graph

u v
e3

e1 e2 e4 e5

with forest TE

u v

e1 e2

e1e1...

e1e2...

e2e2...

e2e1...

e3 e4 e5

e3e1...

e3e2...

e4e3...

e4e4...

e4e5...

e5e3...

e5e4...

e5e5...

Obviously, the trees uE∗ and vE∗ are not isomorphic and PIso(TE) is a group bundle.
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Self-similar groupoid actions

Let E be a finite directed graph with no sources, and let G be a groupoid with unit space
E0. We denote by d and t the domain and target maps.
Definition. A self-similar action (G,E) on the path space of E is given by a faithful
groupoid homomorphism G→ PIso(TE) such that for every g ∈ G and every e ∈ d(g)E1

there exists a unique h ∈ G denoted by g|e and called the restriction of g to e such that

g · (eµ) = (g · e)(h · µ) for all µ ∈ s(e)E∗.

We have

d(g|e) = s(e), t(g|e) = s(g · e) = g|e · s(e), r(g · e) = g · r(e).

e

g · e

r(e) = d(g)

g · r(e)

g

s(e)

s(g · e)

g|e

In general s(g · e) 6= g · s(e), i.e. the source map is not G-equivariant.
A self-similar action (G,E) is said to be level transitive if it is transitive on each En. The
action is level transitive iff its extension to ∂TE = E∞ is minimal.
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Examples

Example 1. Let E be the graph

u v w

e2

e3

e4

e5

e6

e1

Consider the groupoid G with generators a, b, c and define the self-similar action (G,E)
given by

a · e1 = e2, a|e1 = u, a · e3 = e6, a|e3 = b,

b · e2 = e5, b|e2 = a, b · e6 = e4, b|e6 = c,

c · e4 = e2, c|e4 = a−1, c · e5 = e6, c|e5 = b.

Then for example

b · e2e1 = e5(b|e2 · e1) = e5(a · e1) = e5e2.

Note that the action of G is level transitive. It can be shown that G is a transitive groupoid
with isotropy Z.
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Examples

Example 2. Let E be the graph

u v
e3

e1 e2 e4

Let G = 〈a, b, c〉 with

a · e1 = e2, a|e1 = a, a · e2 = e1, a|e2 = a,

b · e1 = e1, b|e1 = a, b · e2 = e2, b|e2 = b,

c · e1 = e3, c|e1 = a, c · e2 = e4, c|e2 = c.

The action is level transitive and Gu
u = 〈a, b〉 is isomorphic to the lamplighter group

L = Z2 o Z ∼= (
⊕

Z Z2) o Z.
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The C∗-algebra C∗(G,E)

Given a self-similar groupoid action (G,E), the C∗-algebra C∗(G,E) is the
Cuntz-Pimsner algebra of the C∗-correspondenceM over C∗(G), where

M =M(G,E) = X (E)⊗C(E0) C∗(G).

Here X (E) = C(E1) is the C∗-correspondence over C(E0) associated to the graph E and
C(E0) = C(G(0)) ⊆ C∗(G).

We have L(M) ∼= K(M) ∼= Mn ⊗ C∗(G), where n = |E1|.
The right action of C∗(G) onM is the usual one and the left action is given by

W : G→ L(M), Wg(ie ⊗ a) =

{
ig·e ⊗ ig|e a if d(g) = r(e)

0 otherwise,

where ie ∈ C(E1) and ig ∈ Cc(G) are point masses for e ∈ E1, g ∈ G and a ∈ C∗(G).
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The C∗-algebra C∗(G,E)

Theorem. The Cuntz-Pimsner algebra C∗(G,E) is generated by Ug,Pv and Se such that
g 7→ Ug is a representation of G with Uv = Pv for v ∈ E0;
Se are partial isometries with S∗e Se = Ps(e) and

∑
r(e)=v

SeS∗e = Pv;

UgSe =

{
Sg·eUg|e if d(g) = r(e)
0, otherwise;

UgPv =

{
Pg·vUg if d(g) = v
0, otherwise.

In general, C∗(G,E) is a kind of Zappa-Szép product or C∗-blend. It contains the graph
C∗-algebra C∗(E).

There is a gauge action γ of T such that γz(Ug) = Ug, and γz(Se) = zSe for z ∈ T.

C∗(G,E) is the closed linear span of elements SαUgS∗β , where α, β ∈ E∗ and g ∈ Gs(α)
s(β) .

Here Sα := Se1 · · · Sek for α = e1 · · · ek ∈ E∗.

If Fk denotes the closed linear span of SαUgS∗β with α, β ∈ Ek , then Fk ∼= Mnk ⊗C∗(G).

The core algebra F(G,E) := C∗(G,E)T is isomorphic to lim−→Fk and C∗(G,E) is the
crossed product of F(G,E) by an endomorphism.

This allows to compute K∗(C∗(G,E)) in some cases.
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The Exel-Pardo groupoid

Theorem. If (G,E) is pseudo free (g · e = e and g|e = s(e) implies g = r(e)), then there
is a locally compact Hausdorff étale (Exel-Pardo) groupoid of germs

G(G,E) = {[α, g, β; ξ] : α, β ∈ E∗, g ∈ Gs(α)
s(β) , ξ ∈ βE∞}

such that
C∗(G,E) ∼= C∗(G(G,E)).

The unit space of G(G,E) is identified with E∞ by the map [α, s(α), α; ξ] 7→ ξ.

The topology on G(G,E) is generated by the compact open bisections of the form

Z(α, g, β; U) = {[α, g, β; ξ] ∈ G(G,E) : ξ ∈ U},

where U is an open compact subset of Z(β) = βE∞.

If G is amenable, then C∗(G,E) is nuclear and G(G,E) is also amenable.

G(G,E) is minimal iff E is G-transitive.

G(G,E) is effective (essentially principal) iff
(a) every G-circuit (a pair (g, α) with s(α) = g · r(α)) has an entry;
(b) for every g ∈ G \ G(0) there is ζ ∈ Z(d(g)) such that g · ζ 6= ζ.

If G(G,E) is effective and minimal, then G(G,E) is purely infinite since it contains the
graph groupoid GE .
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Groupoid actions

A groupoid G acts (on the right) on another groupoid H if there are a continuous open
surjection p : H → G(0) and a continuous map H ∗ G→ H, write (h, g) 7→ h · g where

H ∗ G = {(h, g) ∈ H × G | t(g) = p(h)}

such that

i) p(h · g) = d(g) for all (h, g) ∈ H ∗ G,

ii) (h, g1) ∈ H ∗ G and (g1, g2) ∈ G(2) implies that (h, g1g2) ∈ H ∗ G and

h · (g1g2) = (h · g1) · g2,

iii) (h1, h2) ∈ H(2) and (h1h2, g) ∈ H ∗ G implies (h1, g), (h2, g) ∈ H ∗ G and

(h1h2) · g = (h1 · g)(h2 · g),

iv) h · p(h) = h for all h ∈ H.
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Semi-direct products and skew products

If G acts on H, then the semi-direct product or action groupoid is

H o G = H ∗ G = {(h, g) ∈ H × G | t(g) = p(h)},

with multiplication
(h, g)(h′ · g, g′) = (hh′, gg′),

when t(g′) = d(g) and d(h) = t(h′).

The unit space of H o G can be identified with H(0), and there is a groupoid
homomorphism

π : H o G→ G, π(h, g) = g

with kernel π−1(G(0)) = {(h, p(h)) | h ∈ H} isomorphic to H.

If G,Γ are groupoids and ρ : G→ Γ is a homomorphism, also called a cocycle, the skew
product groupoid G×ρ Γ is the set of pairs (g, γ) ∈ G× Γ such that (γ, ρ(g)) ∈ Γ(2)

with multiplication

(g, γ)(g′, γρ(g)) = (gg′, γ) if (g, g′) ∈ G(2)

and inverse
(g, γ)−1 = (g−1, γρ(g)).

There is a left action ρ̂ of Γ on G×ρ Γ given by

γ′ · (g, γ) = (g, γ′γ).
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Similarity (Renault, Matui)

Two homomorphisms φ1, φ2 : G1 → G2 are similar if there is a continuous function
θ : G(0)

1 → G2 such that
θ(t(g))φ1(g) = φ2(g)θ(d(g))

for all g ∈ G1.

Two groupoids G1,G2 are similar if there exist φ : G1 → G2 and ψ : G2 → G1 such that
ψ ◦ φ is similar to idG1 and φ ◦ ψ is similar to idG2 .

Let G act on H on the right. For π : H o G→ G, π(h, g) = g we can form the skew
product (H o G)×π G.

This is made of triples (h, g, g′) ∈ H × G× G such that p(h) = t(g) and (g′, g) ∈ G(2),
with unit space H(0) ∗ G and operations

(h, g, g′)(h′, g′′, g′g) = (h(h′ · g−1), gg′′, g′),

(h, g, g′)−1 = (h−1 · g, g−1, g′g).

Theorem. Let G,H,Γ be étale groupoids such that G acts on H and such that ρ : G→ Γ
is a homomorphism.

Then (H o G)×π G is similar to H and (G×ρ Γ) o Γ is similar to G.
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Homology

If π : X → Y is a local homeomorphism between locally compact Hausdorff spaces, then
for f ∈ Cc(X,Z) define

π∗(f )(y) :=
∑

π(x)=y

f (x).

It follows that π∗(f ) ∈ Cc(Y,Z).

Given an étale groupoid G, let G(1) = G and for n ≥ 2 let G(n) be the space of
composable strings of n elements in G with the product topology.

For n ≥ 2 and i = 0, ..., n, we let ∂i : G(n) → G(n−1) be the face maps defined by

∂i(g1, g2, ..., gn) =


(g2, g3, ..., gn) if i = 0,
(g1, ..., gigi+1, ..., gn) if 1 ≤ i ≤ n− 1,
(g1, g2, ..., gn−1) if i = n.

We define the homomorphisms δn : Cc(G(n),Z)→ Cc(G(n−1),Z) given by

δ1 = d∗ − t∗, δn =
n∑

i=0

(−1)i∂i∗ for n ≥ 2.
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Homology

It can be verified that δn ◦ δn+1 = 0 for all n ≥ 1.

The Moerdijk-Crainic homology groups Hn(G) = Hn(G,Z) are by definition the
homology groups of the chain complex Cc(G(∗),Z) given by

0
δ0←− Cc(G(0),Z)

δ1←− Cc(G(1),Z)
δ2←− Cc(G(2),Z)←− · · · ,

i.e. Hn(G) = ker δn/im δn+1, where δ0 = 0.

Example. For the action groupoid Γ n X associated to a countable discrete group action
Γ y X on a Cantor set, it follows that

Hn(Γ n X) ∼= Hn(Γ,C(X,Z)).

Two equivalent groupoids have the same homology.

Theorem(Ortega). For G an ample Hausdorff groupoid and ρ : G→ Z a cocycle, we have
the following long exact sequence

0←− H0(G)←− H0(G×ρ Z)
id−ρ∗←− H0(G×ρ Z)←− H1(G)←− · · ·

· · · ←− Hn(G)←− Hn(G×ρ Z)
id−ρ∗←− Hn(G×ρ Z)←− Hn+1(G)←− · · ·

where ρ∗ is the map induced by the action ρ̂ : Z y G×ρ Z.
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Homology of G(G,E)

Given a self-similar action (G,E), there is a cocycle

ρ : G(G,E)→ Z, ρ([α, g, β; ξ]) = |α| − |β|

with kernel
N (G,E) =

⋃
k≥1

Nk(G,E),where

Nk(G,E) = {[α, g, β; ξ] ∈ G(G,E) : |α| = |β| = k} ∼= (E∞ o G)× Rk,

and Rk is an equivalence relation on Ek .

There is a homomorphism τk : Nk(G,E)→ G, [α, g, β; ξ] 7→ g with kernel E∞ × Rk .

SinceN (G,E) is equivalent to the skew product G(G,E)×ρ Z, we have an exact
sequence

0←− H0(G(G,E))←− H0(N (G,E))
id−ρ∗←− H0(N (G,E))←− H1(G(G,E))

↑

· · · −→ H2(N (G,E)) −→ H2(G(G,E)) −→ H1(N (G,E))
id−ρ∗−→ H1(N (G,E))

where ρ∗ is the map induced by the action ρ̂ : Z y G(G,E)×ρ Z which takes (γ, n) into
(γ, n + 1).

This allows to compute H∗(G(G,E)) in some cases and to compare it with K∗(C∗(G,E)).
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Example

Let G with unit space G(0) = {u, v,w} and generators a, b, c such that

a · e1 = e2, a|e1 = u, a · e3 = e6, a|e3 = b,

b · e2 = e5, b|e2 = a, b · e6 = e4, b|e6 = c,

c · e4 = e2, c|e4 = a−1, c · e5 = e6, c|e5 = b.

We get a self-similar action (G,E) on

u v w

e2

e3

e4

e5

e6

e1

Since G is transitive with isotropy Z, after some computations we get

K∗(C∗(G,E)) ∼= H∗(G(G,E)) ∼= 0,

so G(G,E) satisfies the HK-conjecture of Matui.
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G-tables and the Higman-Thompson groups

A G-table for (G,E) with |uE1| constant is a matrix of the form

τ =

 α1 α2 · · · αm
g1 g2 · · · gm
β1 β2 · · · βm

 ,

where αi, βi ∈ E∗, gi ∈ Gs(αi)
s(βi)

and E∞ =
⊔m

i=1 Z(αi) =
⊔m

i=1 Z(βi).

A G-table τ determines a homeomorphism τ̄ of E∞ taking βiξ into αi(gi · ξ).

The set of all such homeomorphisms is a countable subgroup VE(G) of Homeo(E∞),
called the Higman-Thompson group.

The topological full group of an effective étale groupoid G is

[[G]] := {πU | U ⊆ G full bisection},

where πU := t|U ◦ (d|U)−1 from d(U) = G(0) to t(U) = G(0), which is a subgroup of
Homeo(G(0)).

The AH-conjecture of Matui claims that for G effective minimal étale with G(0) the Cantor
set, the following sequence is exact

H0(G)⊗ Z2
j−→ [[G]]ab

Iab−→ H1(G)→ 0.
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G-tables and the Higman-Thompson groups

Theorem. For a self-similar action (G,E) such that G(G,E) is effective, we have
VE(G) ∼= [[G(G,E)]]. In particular, [[GE]] ⊆ [[G(G,E)]].

Given a G-table τ =

 α1 α2 · · · αm
g1 g2 · · · gm
β1 β2 · · · βm

, the correspondence

τ 7→ T = Sα1 Ug1 S∗β1
+ Sα2 Ug2 S∗β2

+ · · ·+ Sαm Ugm S∗βm

defines a faithful unitary representation of the group VE(G) in the C∗-algebra C∗(G,E).

Corollary. Assuming G(G,E) amenable, we have an exact sequence

1→ U(C(E∞))→ N(C(E∞),C∗(G,E))→ [[G(G,E)]]→ 1

that splits.

Matui proved that the AH-conjecture holds for GE .

Question. Is the AH-conjecture true for G(G,E)?
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