Self-similar groupoid actions and C^* -algebras

Valentin Deaconu

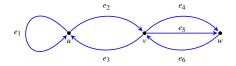
University of Nevada, Reno

Muhlyfest Technion June 29, 2022

Outline

- We recall the concept of a self-similar groupoid action (G, E) on the path space of a finite graph with examples.
- We describe the structure of the associated *C**-algebra *C**(*G*, *E*) and mention some properties of the Exel-Pardo étale groupoid $\mathcal{G}(G, E)$.
- We review some facts about skew products and semi-direct products of groupoids, and prove a kind of Takai duality.
- We indicate how to compute the Crainic-Moerdijk homology of $\mathcal{G}(G, E)$ in some cases, and compare it with the *K*-theory of $C^*(G, E)$.
- We introduce the Higman-Thompson group associated to (G, E) using *G*-tables and relate it to the topological full group of $\mathcal{G}(G, E)$, which is isomorphic to a subgroup of unitaries in the algebra $C^*(G, E)$.

• Let $E = (E^0, E^1, r, s)$ be a finite directed graph with no sources.

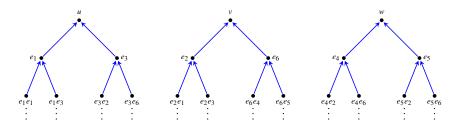


• The set of paths of length k is

$$E^k = \{e_1 e_2 \cdots e_k : e_i \in E^1, r(e_{i+1}) = s(e_i)\}.$$

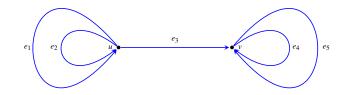
- The space of finite paths is E^{*} := ⋃_{k≥0} E^k and E[∞] is the infinite path space with the topology given by Z(α) = {αξ : ξ ∈ E[∞]} for α ∈ E^{*}.
- The set E^* is indexing the vertices of a forest T_E , where the level *n* has $|E^n|$ vertices.

• The forest T_E looks like

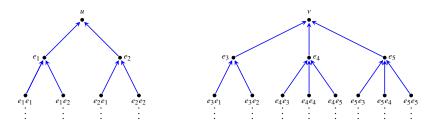


- A partial isomorphism of T_E is given by a bijection g : u₁E^{*} → u₂E^{*} preserving length and such that g · (αe) ∈ (g · α)E¹ for α ∈ E^k and e ∈ E¹.
- The set $PIso(T_E)$ forms a discrete groupoid with unit space E^0 .
- In this example, $PIso(T_E)$ is transitive, but it could happen that there is no bijection $g: u_1E^* \to u_2E^*$ for $u_1 \neq u_2$.
- PIso(T_E) could be a group bundle. If $|E^0| = 1$, then PIso(T_E) =Aut(T_E) is a group.

• Let *E* be the graph



with forest T_E



Obviously, the trees uE^* and vE^* are not isomorphic and $PIso(T_E)$ is a group bundle.

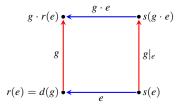
Self-similar groupoid actions

- Let *E* be a finite directed graph with no sources, and let *G* be a groupoid with unit space E^0 . We denote by *d* and *t* the domain and target maps.
- Definition. A self-similar action (G, E) on the path space of E is given by a faithful groupoid homomorphism G → PIso(T_E) such that for every g ∈ G and every e ∈ d(g)E¹ there exists a unique h ∈ G denoted by g|_e and called the restriction of g to e such that

$$g \cdot (e\mu) = (g \cdot e)(h \cdot \mu)$$
 for all $\mu \in s(e)E^*$.

We have

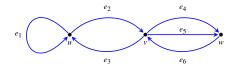
$$d(g|_e) = s(e), \ t(g|_e) = s(g \cdot e) = g|_e \cdot s(e), \ r(g \cdot e) = g \cdot r(e).$$



In general $s(g \cdot e) \neq g \cdot s(e)$, i.e. the source map is not *G*-equivariant.

• A self-similar action (G, E) is said to be level transitive if it is transitive on each E^n . The action is level transitive iff its extension to $\partial T_E = E^{\infty}$ is minimal.

• Example 1. Let *E* be the graph



• Consider the groupoid *G* with generators *a*, *b*, *c* and define the self-similar action (*G*, *E*) given by

$$\begin{aligned} a \cdot e_1 &= e_2, \ a|_{e_1} = u, \ a \cdot e_3 = e_6, \ a|_{e_3} = b, \\ b \cdot e_2 &= e_5, \ b|_{e_2} = a, \ b \cdot e_6 = e_4, \ b|_{e_6} = c, \\ c \cdot e_4 &= e_2, \ c|_{e_4} = a^{-1}, \ c \cdot e_5 = e_6, \ c|_{e_5} = b. \end{aligned}$$

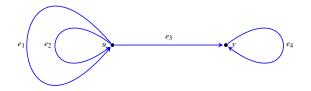
• Then for example

$$b \cdot e_2 e_1 = e_5(b|_{e_2} \cdot e_1) = e_5(a \cdot e_1) = e_5 e_2.$$

• Note that the action of G is level transitive. It can be shown that G is a transitive groupoid with isotropy \mathbb{Z} .

Examples

• Example 2. Let *E* be the graph



• Let
$$G = \langle a, b, c \rangle$$
 with

$$\begin{aligned} a \cdot e_1 &= e_2, \ a|_{e_1} = a, \ a \cdot e_2 = e_1, \ a|_{e_2} = a, \\ b \cdot e_1 &= e_1, \ b|_{e_1} = a, \ b \cdot e_2 = e_2, \ b|_{e_2} = b, \\ c \cdot e_1 &= e_3, \ c|_{e_1} = a, \ c \cdot e_2 = e_4, \ c|_{e_2} = c. \end{aligned}$$

• The action is level transitive and $G_u^u = \langle a, b \rangle$ is isomorphic to the lamplighter group $L = \mathbb{Z}_2 \wr \mathbb{Z} \cong (\bigoplus_{\mathbb{Z}} \mathbb{Z}_2) \rtimes \mathbb{Z}$.

The C^* -algebra $C^*(G, E)$

• Given a self-similar groupoid action (*G*, *E*), the *C**-algebra *C**(*G*, *E*) is the Cuntz-Pimsner algebra of the *C**-correspondence \mathcal{M} over *C**(*G*), where

$$\mathcal{M} = \mathcal{M}(G, E) = \mathcal{X}(E) \otimes_{C(E^0)} C^*(G).$$

- Here $\mathcal{X}(E) = C(E^1)$ is the C^* -correspondence over $C(E^0)$ associated to the graph E and $C(E^0) = C(G^{(0)}) \subseteq C^*(G)$.
- We have $\mathcal{L}(\mathcal{M}) \cong \mathcal{K}(\mathcal{M}) \cong M_n \otimes C^*(G)$, where $n = |E^1|$.
- The right action of $C^*(G)$ on \mathcal{M} is the usual one and the left action is given by

$$W: G \to \mathcal{L}(\mathcal{M}), \ W_g(i_e \otimes a) = \begin{cases} i_g \cdot e \otimes i_g|_e a & \text{if } d(g) = r(e) \\ 0 & \text{otherwise,} \end{cases}$$

where $i_e \in C(E^1)$ and $i_g \in C_c(G)$ are point masses for $e \in E^1, g \in G$ and $a \in C^*(G)$.

The C^* -algebra $C^*(G, E)$

- **Theorem**. The Cuntz-Pimsner algebra $C^*(G, E)$ is generated by U_g, P_v and S_e such that
 - $g \mapsto U_g$ is a representation of G with $U_v = P_v$ for $v \in E^0$;
 - S_e are partial isometries with $S_e^* S_e = P_{s(e)}$ and $\sum S_e S_e^* = P_v$;

•
$$U_g S_e = \begin{cases} S_{g \cdot e} U_{g|e} \text{ if } d(g) = r(e) \\ 0, \text{ otherwise;} \end{cases}$$
 $U_g P_v = \begin{cases} P_{g \cdot v} U_g \text{ if } d(g) = v \\ 0, \text{ otherwise.} \end{cases}$

- In general, $C^*(G, E)$ is a kind of Zappa-Szép product or C^* -blend. It contains the graph C^* -algebra $C^*(E)$.
- There is a gauge action γ of \mathbb{T} such that $\gamma_z(U_g) = U_g$, and $\gamma_z(S_e) = zS_e$ for $z \in \mathbb{T}$.
- $C^*(G, E)$ is the closed linear span of elements $S_{\alpha}U_gS_{\beta}^*$, where $\alpha, \beta \in E^*$ and $g \in G_{s(\beta)}^{s(\alpha)}$. Here $S_{\alpha} := S_{e_1} \cdots S_{e_k}$ for $\alpha = e_1 \cdots e_k \in E^*$.
- If \mathcal{F}_k denotes the closed linear span of $S_{\alpha}U_gS_{\beta}^*$ with $\alpha, \beta \in E^k$, then $\mathcal{F}_k \cong M_{n^k} \otimes C^*(G)$.
- The core algebra $\mathcal{F}(G, E) := C^*(G, E)^{\mathbb{T}}$ is isomorphic to $\varinjlim \mathcal{F}_k$ and $C^*(G, E)$ is the crossed product of $\mathcal{F}(G, E)$ by an endomorphism.
- This allows to compute $K_*(C^*(G, E))$ in some cases.

• **Theorem.** If (G, E) is pseudo free $(g \cdot e = e \text{ and } g|_e = s(e)$ implies g = r(e)), then there is a locally compact Hausdorff étale (Exel-Pardo) groupoid of germs

$$\mathcal{G}(G,E) = \{ [\alpha, g, \beta; \xi] : \alpha, \beta \in E^*, \ g \in G^{s(\alpha)}_{s(\beta)}, \ \xi \in \beta E^{\infty} \}$$

such that

$$C^*(G, E) \cong C^*(\mathcal{G}(G, E)).$$

- The unit space of G(G, E) is identified with E[∞] by the map [α, s(α), α; ξ] → ξ.
- The topology on $\mathcal{G}(G, E)$ is generated by the compact open bisections of the form

$$Z(\alpha, g, \beta; U) = \{ [\alpha, g, \beta; \xi] \in \mathcal{G}(G, E) : \xi \in U \},\$$

where U is an open compact subset of $Z(\beta) = \beta E^{\infty}$.

- If G is amenable, then $C^*(G, E)$ is nuclear and $\mathcal{G}(G, E)$ is also amenable.
- $\mathcal{G}(G, E)$ is minimal iff *E* is *G*-transitive.
- G(G, E) is effective (essentially principal) iff
 (a) every G-circuit (a pair (g, α) with s(α) = g ⋅ r(α)) has an entry;
 (b) for every g ∈ G \ G⁽⁰⁾ there is ζ ∈ Z(d(g)) such that g ⋅ ζ ≠ ζ.
- If $\mathcal{G}(G, E)$ is effective and minimal, then $\mathcal{G}(G, E)$ is purely infinite since it contains the graph groupoid \mathcal{G}_{E} .

 A groupoid G acts (on the right) on another groupoid H if there are a continuous open surjection p : H → G⁽⁰⁾ and a continuous map H * G → H, write (h, g) → h · g where

$$H * G = \{(h, g) \in H \times G \mid t(g) = p(h)\}$$

such that

• i)
$$p(h \cdot g) = d(g)$$
 for all $(h, g) \in H * G$,

• ii) $(h, g_1) \in H * G$ and $(g_1, g_2) \in G^{(2)}$ implies that $(h, g_1g_2) \in H * G$ and

$$h \cdot (g_1g_2) = (h \cdot g_1) \cdot g_2,$$

• iii) $(h_1, h_2) \in H^{(2)}$ and $(h_1h_2, g) \in H * G$ implies $(h_1, g), (h_2, g) \in H * G$ and

$$(h_1h_2)\cdot g = (h_1\cdot g)(h_2\cdot g),$$

• iv) $h \cdot p(h) = h$ for all $h \in H$.

Semi-direct products and skew products

• If G acts on H, then the semi-direct product or action groupoid is

$$H \rtimes G = H * G = \{(h, g) \in H \times G \mid t(g) = p(h)\},\$$

with multiplication

$$(h,g)(h' \cdot g,g') = (hh',gg'),$$

when t(g') = d(g) and d(h) = t(h').

• The unit space of $H \rtimes G$ can be identified with $H^{(0)}$, and there is a groupoid homomorphism

$$\pi: H \rtimes G \to G, \ \pi(h,g) = g$$

with kernel $\pi^{-1}(G^{(0)}) = \{(h, p(h)) \mid h \in H\}$ isomorphic to H.

 If G, Γ are groupoids and ρ : G → Γ is a homomorphism, also called a cocycle, the skew product groupoid G ×_ρ Γ is the set of pairs (g, γ) ∈ G × Γ such that (γ, ρ(g)) ∈ Γ⁽²⁾ with multiplication

$$(g,\gamma)(g',\gamma\rho(g)) = (gg',\gamma)$$
 if $(g,g') \in G^{(2)}$

and inverse

$$(g,\gamma)^{-1} = (g^{-1},\gamma\rho(g)).$$

• There is a left action $\hat{\rho}$ of Γ on $G \times_{\rho} \Gamma$ given by

$$\gamma' \cdot (g, \gamma) = (g, \gamma' \gamma).$$

• Two homomorphisms $\phi_1, \phi_2 : G_1 \to G_2$ are similar if there is a continuous function $\theta : G_1^{(0)} \to G_2$ such that

$$\theta(t(g))\phi_1(g) = \phi_2(g)\theta(d(g))$$

for all $g \in G_1$.

- Two groupoids G_1, G_2 are similar if there exist $\phi : G_1 \to G_2$ and $\psi : G_2 \to G_1$ such that $\psi \circ \phi$ is similar to id_{G_1} and $\phi \circ \psi$ is similar to id_{G_2} .
- Let G act on H on the right. For π : H ⋊ G → G, π(h,g) = g we can form the skew product (H ⋊ G) ×_π G.
- This is made of triples $(h, g, g') \in H \times G \times G$ such that p(h) = t(g) and $(g', g) \in G^{(2)}$, with unit space $H^{(0)} * G$ and operations

$$(h, g, g')(h', g'', g'g) = (h(h' \cdot g^{-1}), gg'', g'),$$

 $(h, g, g')^{-1} = (h^{-1} \cdot g, g^{-1}, g'g).$

- **Theorem**. Let G, H, Γ be étale groupoids such that G acts on H and such that $\rho : G \to \Gamma$ is a homomorphism.
- Then $(H \rtimes G) \times_{\pi} G$ is similar to H and $(G \times_{\rho} \Gamma) \rtimes \Gamma$ is similar to G.

• If $\pi : X \to Y$ is a local homeomorphism between locally compact Hausdorff spaces, then for $f \in C_c(X, \mathbb{Z})$ define

$$\pi_*(f)(y) := \sum_{\pi(x)=y} f(x).$$

- It follows that $\pi_*(f) \in C_c(Y, \mathbb{Z})$.
- Given an étale groupoid G, let G⁽¹⁾ = G and for n ≥ 2 let G⁽ⁿ⁾ be the space of composable strings of n elements in G with the product topology.
- For $n \ge 2$ and i = 0, ..., n, we let $\partial_i : G^{(n)} \to G^{(n-1)}$ be the face maps defined by

$$\partial_i(g_1, g_2, ..., g_n) = \begin{cases} (g_2, g_3, ..., g_n) & \text{if } i = 0, \\ (g_1, ..., g_i g_{i+1}, ..., g_n) & \text{if } 1 \le i \le n-1, \\ (g_1, g_2, ..., g_{n-1}) & \text{if } i = n. \end{cases}$$

• We define the homomorphisms $\delta_n : C_c(G^{(n)}, \mathbb{Z}) \to C_c(G^{(n-1)}, \mathbb{Z})$ given by

$$\delta_1 = d_* - t_*, \ \ \delta_n = \sum_{i=0}^n (-1)^i \partial_{i*} \text{ for } n \ge 2.$$

Homology

- It can be verified that $\delta_n \circ \delta_{n+1} = 0$ for all $n \ge 1$.
- The Moerdijk-Crainic homology groups H_n(G) = H_n(G, ℤ) are by definition the homology groups of the chain complex C_c(G^(*), ℤ) given by

$$0 \stackrel{\delta_0}{\longleftarrow} C_c(G^{(0)}, \mathbb{Z}) \stackrel{\delta_1}{\longleftarrow} C_c(G^{(1)}, \mathbb{Z}) \stackrel{\delta_2}{\longleftarrow} C_c(G^{(2)}, \mathbb{Z}) \longleftarrow \cdots$$

i.e. $H_n(G) = \ker \delta_n / \operatorname{im} \delta_{n+1}$, where $\delta_0 = 0$.

• **Example**. For the action groupoid $\Gamma \ltimes X$ associated to a countable discrete group action $\Gamma \curvearrowright X$ on a Cantor set, it follows that

$$H_n(\Gamma \ltimes X) \cong H_n(\Gamma, C(X, \mathbb{Z})).$$

- Two equivalent groupoids have the same homology.
- Theorem(Ortega). For G an ample Hausdorff groupoid and ρ : G → Z a cocycle, we have the following long exact sequence

$$0 \longleftarrow H_0(G) \longleftarrow H_0(G \times_{\rho} \mathbb{Z}) \stackrel{id-\rho_*}{\longleftarrow} H_0(G \times_{\rho} \mathbb{Z}) \longleftarrow H_1(G) \longleftarrow \cdots$$

$$\cdots \longleftarrow H_n(G) \longleftarrow H_n(G \times_{\rho} \mathbb{Z}) \stackrel{id-\rho_*}{\longleftarrow} H_n(G \times_{\rho} \mathbb{Z}) \longleftarrow H_{n+1}(G) \longleftarrow \cdots$$

where ρ_* is the map induced by the action $\hat{\rho} : \mathbb{Z} \curvearrowright G \times_{\rho} \mathbb{Z}$.

• Given a self-similar action (G, E), there is a cocycle

$$\rho: \mathcal{G}(G, E) \to \mathbb{Z}, \ \rho([\alpha, g, \beta; \xi]) = |\alpha| - |\beta|$$

with kernel

$$\mathcal{N}(G, E) = \bigcup_{k \ge 1} \mathcal{N}_k(G, E)$$
, where

 $\mathcal{N}_k(G, E) = \{ [\alpha, g, \beta; \xi] \in \mathcal{G}(G, E) : |\alpha| = |\beta| = k \} \cong (E^{\infty} \rtimes G) \times R_k,$

and R_k is an equivalence relation on E^k .

- There is a homomorphism $\tau_k : \mathcal{N}_k(G, E) \to G, [\alpha, g, \beta; \xi] \mapsto g$ with kernel $E^{\infty} \times R_k$.
- Since N(G, E) is equivalent to the skew product G(G, E) ×_ρ Z, we have an exact sequence

$$0 \longleftarrow H_0(\mathcal{G}(G, E)) \longleftarrow H_0(\mathcal{N}(G, E)) \stackrel{id-\rho_*}{\longleftarrow} H_0(\mathcal{N}(G, E)) \longleftarrow H_1(\mathcal{G}(G, E))$$

$$\uparrow$$

$$\cdots \longrightarrow H_2(\mathcal{N}(G,E)) \longrightarrow H_2(\mathcal{G}(G,E)) \longrightarrow H_1(\mathcal{N}(G,E)) \stackrel{id-\rho_*}{\longrightarrow} H_1(\mathcal{N}(G,E))$$

where ρ_* is the map induced by the action $\hat{\rho} : \mathbb{Z} \curvearrowright \mathcal{G}(G, E) \times_{\rho} \mathbb{Z}$ which takes (γ, n) into $(\gamma, n + 1)$.

• This allows to compute $H_*(\mathcal{G}(G, E))$ in some cases and to compare it with $K_*(C^*(G, E))$.

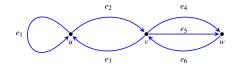
Example

• Let G with unit space $G^{(0)} = \{u, v, w\}$ and generators a, b, c such that

$$a \cdot e_1 = e_2, \ a|_{e_1} = u, \ a \cdot e_3 = e_6, \ a|_{e_3} = b,$$

 $b \cdot e_2 = e_5, \ b|_{e_2} = a, \ b \cdot e_6 = e_4, \ b|_{e_6} = c,$
 $c \cdot e_4 = e_2, \ c|_{e_4} = a^{-1}, \ c \cdot e_5 = e_6, \ c|_{e_5} = b.$

• We get a self-similar action (G, E) on



• Since G is transitive with isotropy \mathbb{Z} , after some computations we get

$$K_*(C^*(G,E)) \cong H_*(\mathcal{G}(G,E)) \cong 0,$$

so $\mathcal{G}(G, E)$ satisfies the *HK*-conjecture of Matui.

• A *G*-table for (G, E) with $|uE^1|$ constant is a matrix of the form

$$\tau = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ g_1 & g_2 & \cdots & g_m \\ \beta_1 & \beta_2 & \cdots & \beta_m \end{pmatrix}$$

where $\alpha_i, \beta_i \in E^*, g_i \in G^{s(\alpha_i)}_{s(\beta_i)}$ and $E^{\infty} = \bigsqcup_{i=1}^m Z(\alpha_i) = \bigsqcup_{i=1}^m Z(\beta_i)$.

- A *G*-table τ determines a homeomorphism $\overline{\tau}$ of E^{∞} taking $\beta_i \xi$ into $\alpha_i(g_i \cdot \xi)$.
- The set of all such homeomorphisms is a countable subgroup $V_E(G)$ of Homeo (E^{∞}) , called the Higman-Thompson group.
- The topological full group of an effective étale groupoid G is

$$\llbracket G \rrbracket := \{ \pi_U \mid U \subseteq G \text{ full bisection} \},\$$

where $\pi_U := t|_U \circ (d|_U)^{-1}$ from $d(U) = G^{(0)}$ to $t(U) = G^{(0)}$, which is a subgroup of Homeo $(G^{(0)})$.

• The AH-conjecture of Matui claims that for G effective minimal étale with $G^{(0)}$ the Cantor set, the following sequence is exact

$$H_0(G)\otimes \mathbb{Z}_2 \xrightarrow{j} \llbracket G \rrbracket_{ab} \xrightarrow{I_{ab}} H_1(G) \to 0.$$

G-tables and the Higman-Thompson groups

• **Theorem**. For a self-similar action (G, E) such that $\mathcal{G}(G, E)$ is effective, we have $V_E(G) \cong [\![\mathcal{G}(G, E)]\!]$. In particular, $[\![\mathcal{G}_E]\!] \subseteq [\![\mathcal{G}(G, E)]\!]$.

• Given a *G*-table
$$\tau = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ g_1 & g_2 & \cdots & g_m \\ \beta_1 & \beta_2 & \cdots & \beta_m \end{pmatrix}$$
, the correspondence

$$\tau \mapsto T = S_{\alpha_1} U_{g_1} S^*_{\beta_1} + S_{\alpha_2} U_{g_2} S^*_{\beta_2} + \dots + S_{\alpha_m} U_{g_m} S^*_{\beta_m}$$

defines a faithful unitary representation of the group $V_E(G)$ in the C^{*}-algebra C^{*}(G, E).

• Corollary. Assuming $\mathcal{G}(G, E)$ amenable, we have an exact sequence

$$1 \to U(C(E^{\infty})) \to N(C(E^{\infty}), C^*(G, E)) \to \llbracket \mathcal{G}(G, E) \rrbracket \to 1$$

that splits.

- Matui proved that the AH-conjecture holds for \mathcal{G}_E .
- Question. Is the *AH*-conjecture true for $\mathcal{G}(G, E)$?

- M. Crainic and I. Moerdijk, A homology theory for étale groupoids, J. Reine Angew. Math. 521 (2000), 25–46.
- V. Deaconu, On groupoids and C*-algebras from self-similar actions, New York J. of Math. 27 (2021), 923–942.
- R. Exel, E. Pardo, Self-Similar graphs: a unified treatment of Katsura and Nekrashevych algebras, Adv. Math. 306 (2017), 1046–1129.
- C. Farsi, A. Kumjian, D. Pask and A. Sims, Ample groupoids: equivalence, homology, and Matui's HK conjecture, Münster J. Math. 12 (2019), no. 2, 411–451.
- M. Laca, I. Raeburn, J. Ramagge, M. F. Whittaker, Equilibrium states on operator algebras associated to self-similar actions of groupoids on graphs, Adv. Math. 331 (2018), 268–325.
- K. Matsumoto, H. Matui, Full groups of Cuntz-Krieger algebras and Higman-Thompson groups. Groups Geom. Dyn. 11 (2017), no. 2, 499–531.
- H. Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. London Math. Soc. (3) 104 (2012), 27–56.
- H. Matui, *Topological full groups of étale groupoids*, Operator algebras and applications-the Abel Symposium 2015, 203–230, Springer 2017.
- V. Nekrashevych, C*-algebras and self-similar groups, J. Reine Angew. Math. 630 (2009) 59–123.
- V. Nekrashevych, Self-similar groups, Math. Surveys Monogr. 117, AMS Providence 2005.

THANK YOU!