Groupoids, Unitary extensions and Wavelets

Marius Ionescu joint with Paul S. Muhly

NAT, in honor of my adviser Paul S. Muhly

June 29, 2022

Motivations: Wavelets

Definition

A wavelet is a vector ψ in $L^2(\mathbb{R})$ such that the family

$$\{D^{j}T^{k}\psi : j,k\in\mathbb{Z}\}$$

is an orthonormal basis for $L^2(\mathbb{R})$, where $T\xi(x) = \xi(x-1), \xi \in L^2(\mathbb{R})$, and $D\xi(x) = \sqrt{2}\xi(2x)$.

Fact (Building wavelets via Cuntz isometries [BJ97])

Let $\sigma : \mathbb{T} \to \mathbb{T}$ be $\sigma(z) = z^2$ and $\{m_1, m_2\}$ be a filter bank: $\sum_{\sigma(w)=z} \overline{m_i(w)} m_j(w) = 2\delta_{i,j}$. Then $\{S_1, S_2\}$, where $S_i(\xi)(z) = m_i(z)\xi(\sigma(z))$, $\xi \in L^2(\mathbb{T})$, is a Cuntz family of isometries. **Key idea**: build the minimal unitary extension of S_1 .

The Deaconu-Renault groupoid

Fact ([Ren80, Dea95, AR97, Ren00])

- Let X be a compact Hausdorff space and σ : X → X a onto local homeomorphism.
- The Deaconu-Renault groupoid $G(X, \sigma)$ is defined via

$$G := G(X, \sigma) := \{(x, m - n, y) \in X \times \mathbb{Z} \times X : \sigma^m(x) = \sigma^n(y)\}$$

endowed with the operations (x, k, y)(y, l, z) = (x, k + l, z) and $(x, k, y)^{-1} = (y, -k, x)$.

G(X, σ) is an étale locally compact groupoid.

Filter banks and Cuntz isometries in $G(X, \sigma)$

Fact

- A filter bank $\{m_1, \ldots, m_n\}$ is a family of functions on X such that $\sum_{\sigma(y)=x} \overline{m_i(y)} m_j(y) = |\sigma^{-1}(x)| \delta_{i,j}.$
- [IM08] A filter bank determines a Cuntz family of isometries in C*(G).

Example ([IM08])

Let $X = \mathbb{T}$, $\sigma(z) = z^2$, and $\{m_1, m_2\}$ a filter bank. If L is the trivial unitary representation of $G(\mathbb{T}, \sigma)$, we recover the classical wavelet construction.

Imprimitivity groupoids

Fact ([MRW87])

We assume now that G is an arbitrary topological groupoid.

- Let Z be a free and proper right G-space. We write $s : Z \to G^{(0)}$ for the moment map.
- Then G acts diagonally on Z * Z and G^Z := (Z * Z)/G is a groupoid that acts on the left on Z via

$$[x,y]\cdot (yg)=xg.$$

• Moreover, G^Z and G are equivalent groupoids and Z is an equivalence between them.

Blow up groupoids

Fact

We continue to assume that G is a topological groupoid.

- Let Y be a l.c. Hausdorff space and Φ : Y → G⁽⁰⁾ a continuous open surjective map.
- Then Z := Y * G is a right G-space: the moment map is s(x,g) = s(g) and (x,g)h = (x,gh).

Theorem

The imprimitivity groupoid $G^{Z} = (Z * Z)/G$ is isomorphic to the groupoid Y * G * Y, where

$$Y * G * Y = \{(x, g, y) \in Y \times G \times Y : \Phi(x) = r(g) \text{ and } \Phi(y) = s(g)\},$$

is endowed with the operations $(x, g, y) \cdot (y, h, z) := (x, gh, z)$ and $(x, g, y)^{-1} := (y, g^{-1}, x)$.

Haar systems on the blow up groupoids

Fact

Assume that G is a topological groupoid endowed with a Haar system $\lambda = \{\lambda^u\}_{u \in G^{(0)}}$ and $\Phi : Y \to G^{(0)}$ is an open continuous surjective map.

- We begin by choosing an arbitrary full Φ -system of measures $\{\nu_u\}_{u\in G^{(0)}}$ on Y.
- The system of measures $\{\alpha_u\}_{u\in G^{(0)}}$ defined via

$$lpha_u(f) := \int_{\mathcal{G}_u} \int_Y f(y,g) d
u_{r(g)}(y) d\lambda_u(g), \qquad u \in \mathcal{G}^{(0)},$$

is a full, equivariant s-system of measures on Z.

• It follows that the equation

$$eta(f)(x) := \int_{\mathcal{G}^{\Phi(x)}} \int_Y f(x,g,y) d
u_{s(g)}(y) d\lambda^{\Phi(x)}(g), \ x \in Y,$$

defines a Haar system on Y * G * Y.

σ -systems of measures on X

Fact

- σ is dual to the injective C*-endomorphism π : C(X) → C(X) defined by π(f) := f ∘ σ.
- Therefore, π has a left inverse.

Theorem

Every left inverse of π is given by a map $\mathcal{L}_D : C(X) \to C(X)$ where D is a strictly positive, real-valued, continuous function on X such that

 $\sum_{\sigma(y)=x} D(y) = 1$

for all $x \in X$ and \mathcal{L}_D is defined by the formula

$$\mathcal{L}_D(f)(x) := \sum_{\sigma(y)=x} D(y)f(y), \qquad f \in C(X).$$

Conversely, each such \mathcal{L}_D is a left inverse of π .

A sequence of blow up groupoids

Fact

We **chose** a transfer operator given by a continuous map D.

$$Z_n := X_n * G = \{(z, (x, k - l, y)) \in X \times G : \sigma^n(z) = x\}.$$

- The imprimitivity groupoid G^{Z_n} is isomorphic to the blow up groupoid G_n := X_{σⁿ} * G *_{σⁿ} X.
- For $n \ge 1$ define the Φ_n -system of measure $\{\nu_{n,x}\}$ on X via

$$\nu_{n,x}\{y\} = D(\sigma^{n-1}(y))\cdots D(y)$$

Inductive systems of C^* -correspondences

Fact

• For
$$n \ge 0$$
, let $\mathcal{X}_n = \overline{C_c(Z_n)}^{C^*(G)}$ be the corresponding $C^*(G_n) - C^*(G)$ imprimitivity bimodule.

Theorem

For
$$n \ge m \ge 0$$
 define $V_{n,m} : \mathcal{X}_m \to \mathcal{X}_n$ via

$$V_{n,m}(\xi)(z, (x, k - l, y)) = \xi(\sigma^{n-m}(z), (x, k - l, y))$$

for all $(z, (x, n - m, y)) \in Z_n$. Then $\{V_{n,m}\}$ is a sequence of adjointable isometries from \mathcal{X}_m to \mathcal{X}_n such that $V_{n,m}V_{m,k} = V_{n,k}$ for all $n \ge m \ge k \ge 0$. In particular, $\{\mathcal{X}_n, V_{n,m}\}$ is an inductive sequence of Hilbert-modules.

A "limit" groupoid

Fact

- Let the projective system $X_n \stackrel{\sigma_{n,m}}{\leftarrow} X_m$, where $X_n = X$ for every *n*, and $\sigma_{n,m} = \sigma^{m-n}$ for all $m \ge n$.
- Consider the projective limit

$$X_{\infty} := \{ \underline{x} := (x_n)_{n \ge 1} \in X^{\mathbb{N}} \mid x_n = \sigma(x_{n+1}) \}.$$

• The map
$$\sigma_{\infty}: X_{\infty} \to X_{\infty}$$
 defined by $\sigma_{\infty}(x_1, x_2, \cdots) = (\sigma(x_1), x_1, x_2, \cdots)$ is a homeomorphism such that $p_n \circ \sigma_{\infty} = \sigma \circ p_n$ for all n .

A "limit" groupoid, II

Fact

• We form the right G-space
$$Z_{\infty} := X_{\infty} * G = \{(\underline{x}, (x, k - l, y)) \in X \times G\}$$

• Let $G_{\infty} = X_{\infty} * G * X_{\infty}$ be the blow up groupoid.

• We define a full p-system $\{\nu_x\}_{x\in X}$ of measures on X_∞ via

$$\int_{X_{\infty}} f_1(x_1) \cdots f_n(x_n) d\nu_x(\underline{x}) = f_1(x)$$
$$(\sum_{\sigma(x_2)=x} D(x_2)f(x_2)\cdots$$
$$(\sum_{\sigma(x_n)=x_{n-1}} D(x_n)f(x_n))\cdots)).$$

The limit of the inductive system

Theorem

Let $\mathcal{X}_{\infty} = \overline{C_c(Z_{\infty})}^{C^*(G)}$ be the $C^*(G_{\infty}) - C^*(G)$ imprimitivity bimodule. Then \mathcal{X}_{∞} is isomorphic to the inductive limit $\lim_{\to} (\mathcal{X}_n, V_{n,m})$ in the sense of [LR07]. Indeed, $V_{\infty,n} : C_c(Z_n) \to C_c(Z_{\infty})$ defined via

$$V_{\infty,n}(\xi)(\underline{x},(x_1,k-l,y)) := \xi(x_n,(x_1,k-l,y))$$

extends to an adjointable isometry for all $n \ge 0$ such that $V_{\infty,n} \circ V_{n,m} = V_{\infty,m}$ for all $n \ge m \ge 0$ and $\bigcup_{n\ge 0} V_{\infty,n}(\mathcal{X}_n)$ is dense in \mathcal{X}_{∞} .

Isometries in $\mathcal{L}(\mathcal{X}_n)$

Fact

For $n \ge 0$ and $\xi \in C_c(Z_n)$ define

$$S_n\xi(z,(x,k-l,y)) = \sqrt{D(x)}\xi(\sigma(z),(\sigma(x),k-l-l,y)).$$

Theorem

 S_n is an adjointable isometry on \mathcal{X}_n for all $n \ge 0$ such that $V_{n,m}S_m = S_nV_{n,m}$ for all $n \ge m \ge 0$. Moreover, for n = 0 the isometry S_0 is given by

$$S_D(x, k - l, y) = egin{cases} \sqrt{D(x)} & ext{if } \sigma(x) = y, \ k - l = 1 \ 0 & ext{otherwise.} \end{cases}$$

Example

Fact

- Let $X = \mathbb{T}$ and $\sigma(z) = z^2$.
- Let $\{m_1, m_2\}$ be a filter bank.
- Set $D(z) = |m_1(z)|^2/2$. Then $\sum_{w^2=z} D(w) = 1$ for all $z \in \mathbb{T}$.
- The isometry S_0 equals the isometry S_{m_1} defined earlier in the talk.

The unitary extension of S_0

Theorem

Let $U \in \mathcal{L}(\mathcal{X}_{\infty})$ be defined via

$$U\xi(\underline{x},(x,k-l,y)) = \sqrt{D(x)\xi(\sigma_{\infty}(\underline{x}),(\sigma(x),k-l-l,y))}$$

for $\xi \in C_c(Z_{\infty})$. The U is a unitary such that $U \circ V_{\infty,n} = V_{\infty,n} \circ S_n$ for all $n \ge 0$. In particular, U is the minimal unitary extension of $S_0 = S_D$.

Theorem

U acts as a multiplier on $C^*(G_\infty)$ via

$$(Uf)(\underline{x},(x,k-l,y),\underline{y}) = \sqrt{D(x)}f(\sigma_{\infty}(\underline{x}),(\sigma(x),k-l-1,y),\underline{y})$$

for all $f \in C_c(G_\infty)$ and $(\underline{x}, (x, k - l, y), \underline{y}) \in G_\infty$.

An aplication: generalized multiresolution analysis

Theorem

Let $Y_n := V_{\infty,n}(\mathcal{X}_n)$ for all $n \ge 0$ and let $Y_n = U(Y_{n+1})$ for all n < 0. The sequence of submodules $\{Y_k\}$ and the unitary U form a projective multi-resolution analyses for \mathcal{X}_{∞} . That is, $(\{Y_k\}, U)$ satisfy the following properties:

• Y_0 is a complemented $C^*(G)$ -submodule of \mathcal{X}_{∞} .

2
$$Y_{n+1} = U^{-1}(Y_n)$$
 for all $n \in \mathbb{Z}$.

§ Y_n is a complemented sub-module of Y_{n+1} for all $n \in \mathbb{Z}$.

 $\bigcirc \bigcup_{n \in \mathbb{Z}} Y_n$ is dense in \mathcal{X}_{∞} .

If, in addition, S_0 is a pure isometry, then $\bigcap_{n \in \mathbb{Z}} Y_n = \emptyset$.

From groupoids to Hibert spaces: unitary representations of groupoids

Definition

- A unitary representation of (G, λ) is a triple $(\mu, G^{(0)} * \mathcal{H}, L)$, where
 - μ is a quasi-invariant measure on $G^{(0)}$:

$$\int_{G^{(0)}}\int_{G_u}f(g)\Delta_{\mu}(g)\,d\lambda_u(g)d\mu(u)=\int_{G^{(0)}}\int_{G^u}f(g)\,d\lambda^u(g)d\mu(u).$$

- $\begin{array}{l} & G^{(0)} \ast \mathcal{H} \text{ is a Hilbert bundle over } G^{(0)}. \\ & L: G \to \mathsf{lso}(\mathcal{H}) = \{(r(g), L_g, s(g)) : g \in G\}, \text{ with } \\ & L_g: \mathcal{H}(s(g)) \to \mathcal{H}(r(g)) \text{ a Hilbert space isomorphism.} \end{array}$
- The integrated form of a unitary representation acts on $L^2(G^{(0)} * \mathcal{H}, \mu)$ via

$$L(f)\xi(u) = \int_{G^u} f(g)L_g(\xi(s(g))) d\lambda^u(g).$$

Inducing unitary representations to the blow up groupoid

Fact ([Ren14])

- Let (μ, G⁽⁰⁾ * H, L) a unitary representation of (G, λ) and let Δ_μ the cocycle determined by μ.
- Let Z = Y * G and ν = {ν_u}_{u∈G⁽⁰⁾} be a Φ-system on Y. The induced representation (m, K, Ind L) of Y * G * Y is defined via:
 - There is a measurable function b on Z such that $b(xg)/b(x) = \Delta_{\mu}(g)$ ([Hol17]).
 - The measure m on Y is given by

$$\int_Y f(x) dm(x) = \int_{G^{(0)}} \int_Y f(x) b(x, \Phi(x)) d\nu_u(x) d\mu(u).$$

The Hilbert bundle $\mathcal{K} = Y * \mathcal{H} = \{(x, \xi) : \xi \in \mathcal{H}(\Phi(x))\}$ and the induced action is given by

$$\operatorname{Ind} L_{(x,g,y)}(y,\xi) = (x, L_g\xi).$$

Example

Example

- Let X = T and σ(z) = z², and let {m₁, m₂} be a filter bank. As before, we let D be defined by m₁.
- Let (μ, X * H, L) be the trivial representation of G(T, σ): μ is the normalized Haar measure on T; H is the trivial one dimensional Hilbert bundle; L is the trivial representation L_(x,k,y)(y, ξ) = (x, ξ).
- The integrated form of L acts on $L^2(\mu)$ and $L(S_1)\xi(z) = m_1(z)\xi(z^2)$.
- The space \mathbb{T}_{∞} is the 2-adic solenoid and the blow up groupoid is $\mathbb{T}_{\infty} * G * \mathbb{T}_{\infty}$.
- Since μ is invariant, *b* is constant and we can chose it to be 1. The Hilbert bundle \mathcal{K} is the trivial bundle.
- Hence the integrated form acts on $L^2(m)$ and we recover the minimal unitary extension that defined the wavelet.

References I

- Victor Arzumanian and Jean Renault, *Examples of pseudogroups and their C*-algebras*, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, pp. 93–104. MR 1491110
- Ola Bratteli and Palle E. T. Jorgensen, Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale N, Integral Equations Operator Theory 28 (1997), no. 4, 382–443. MR 1465320
- Valentin Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1779–1786. MR 1233967 (95h:46104)
- Rohit Dilip Holkar, Topological construction of C*-correspondences for groupoid C*-algebras, J. Operator Theory 77 (2017), no. 1, 217–241. MR 3614514

References II

- Marius Ionescu and Paul S. Muhly, Groupoid methods in wavelet analysis, Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, Contemp. Math., vol. 449, Amer. Math. Soc., Providence, RI, 2008, pp. 193–208. MR 2391805
- Nadia S. Larsen and Iain Raeburn, Projective multi-resolution analyses arising from direct limits of Hilbert modules, Math. Scand. 100 (2007), no. 2, 317–360. MR 2339372
- Paul S. Muhly, Jean N. Renault, and Dana P. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory 17 (1987), no. 1, 3–22. MR 88h:46123
- Jean Renault, *A groupoid approach to C*-algebras*, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266 (82h:46075)

References III

_____, *Cuntz-like algebras*, Operator theoretical methods (Timișoara, 1998), Theta Found., Bucharest, 2000, pp. 371–386. MR 1770333

_____, *Induced representations and hypergroupoids*, SIGMA Symmetry Integrability Geom. Methods Appl. **10** (2014), Paper 057, 18. MR 3226993

Thank you Paul for being my adviser and, more importantly, my friend!

