Groupoids, Unitary extensions and Wavelets

Marius lonescu
joint with Paul S. Muhly
NAT, in honor of my adviser Paul S. Muhly
June 29, 2022

Motivations: Wavelets

Definition

A wavelet is a vector ψ in $L^{2}(\mathbb{R})$ such that the family

$$
\left\{D^{j} T^{k} \psi: j, k \in \mathbb{Z}\right\}
$$

is an orthonormal basis for $L^{2}(\mathbb{R})$, where $T \xi(x)=\xi(x-1), \xi \in L^{2}(\mathbb{R})$, and $D \xi(x)=\sqrt{2} \xi(2 x)$.

Fact (Building wavelets via Cuntz isometries [BJ97])

Let $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ be $\sigma(z)=z^{2}$ and $\left\{m_{1}, m_{2}\right\}$ be a filter bank:
$\sum_{\sigma(w)=z} m_{i}(w) m_{j}(w)=2 \delta_{i, j}$.
Then $\left\{S_{1}, S_{2}\right\}$, where $S_{i}(\xi)(z)=m_{i}(z) \xi(\sigma(z)), \xi \in L^{2}(\mathbb{T})$, is a Cuntz family of isometries.
Key idea: build the minimal unitary extension of S_{1}.

The Deaconu-Renault groupoid

Fact ([Ren80, Dea95, AR97, Ren00])

- Let X be a compact Hausdorff space and $\sigma: X \rightarrow X$ a onto local homeomorphism.
- The Deaconu-Renault groupoid $G(X, \sigma)$ is defined via

$$
G:=G(X, \sigma):=\left\{(x, m-n, y) \in X \times \mathbb{Z} \times X: \sigma^{m}(x)=\sigma^{n}(y)\right\}
$$

endowed with the operations $(x, k, y)(y, I, z)=(x, k+I, z)$ and $(x, k, y)^{-1}=(y,-k, x)$.

- $G(X, \sigma)$ is an étale locally compact groupoid.

Filter banks and Cuntz isometries in $G(X, \sigma)$

Fact

- A filter bank $\left\{m_{1}, \ldots, m_{n}\right\}$ is a family of functions on X such that $\sum_{\sigma(y)=x} \overline{m_{i}(y)} m_{j}(y)=\left|\sigma^{-1}(x)\right| \delta_{i, j}$.
- [IM08] A filter bank determines a Cuntz family of isometries in $C^{*}(G)$.

Example ([IM08])

Let $X=\mathbb{T}, \sigma(z)=z^{2}$, and $\left\{m_{1}, m_{2}\right\}$ a filter bank. If L is the trivial unitary representation of $G(\mathbb{T}, \sigma)$, we recover the classical wavelet construction.

Imprimitivity groupoids

Fact ([MRW87])

We assume now that G is an arbitrary topological groupoid.

- Let Z be a free and proper right G-space. We write s : $Z \rightarrow G^{(0)}$ for the moment map.
- Then G acts diagonally on $Z * Z$ and $G^{Z}:=(Z * Z) / G$ is a groupoid that acts on the left on Z via

$$
[x, y] \cdot(y g)=x g .
$$

- Moreover, G^{Z} and G are equivalent groupoids and Z is an equivalence between them.

Blow up groupoids

Fact

We continue to assume that G is a topological groupoid.

- Let Y be a l.c. Hausdorff space and $\Phi: Y \rightarrow G^{(0)}$ a continuous open surjective map.
- Then $Z:=Y * G$ is a right G-space: the moment map is $s(x, g)=s(g)$ and $(x, g) h=(x, g h)$.

Theorem

The imprimitivity groupoid $G^{Z}=(Z * Z) / G$ is isomorphic to the groupoid $Y * G * Y$, where

$$
Y * G * Y=\{(x, g, y) \in Y \times G \times Y: \Phi(x)=r(g) \text { and } \Phi(y)=s(g)\}
$$

is endowed with the operations $(x, g, y) \cdot(y, h, z):=(x, g h, z)$ and $(x, g, y)^{-1}:=\left(y, g^{-1}, x\right)$.

Haar systems on the blow up groupoids

Fact

Assume that G is a topological groupoid endowed with a Haar system $\lambda=\left\{\lambda^{u}\right\}_{u \in G^{(0)}}$ and $\Phi: Y \rightarrow G^{(0)}$ is an open continuous surjective map.

- We begin by choosing an arbitrary full Ф-system of measures $\left\{\nu_{u}\right\}_{u \in G^{(0)}}$ on Y.
- The system of measures $\left\{\alpha_{u}\right\}_{u \in G^{(0)}}$ defined via

$$
\alpha_{u}(f):=\int_{G_{u}} \int_{Y} f(y, g) d \nu_{r(g)}(y) d \lambda_{u}(g), \quad u \in G^{(0)},
$$

is a full, equivariant s-system of measures on Z.

- It follows that the equation

$$
\beta(f)(x):=\int_{G^{\Phi(x)}} \int_{Y} f(x, g, y) d \nu_{s(g)}(y) d \lambda^{\Phi(x)}(g), x \in Y
$$

defines a Haar system on $Y * G * Y$.

σ-systems of measures on X

Fact

- σ is dual to the injective C^{*}-endomorphism $\pi: C(X) \rightarrow C(X)$ defined by $\pi(f):=f \circ \sigma$.
- Therefore, π has a left inverse.

Theorem

Every left inverse of π is given by a map $\mathcal{L}_{D}: C(X) \rightarrow C(X)$ where D is a strictly positive, real-valued, continuous function on X such that

$$
\sum_{\sigma(y)=x} D(y)=1
$$

for all $x \in X$ and \mathcal{L}_{D} is defined by the formula

$$
\mathcal{L}_{D}(f)(x):=\sum_{\sigma(y)=x} D(y) f(y), \quad f \in C(X) .
$$

Conversely, each such \mathcal{L}_{D} is a left inverse of π.

A sequence of blow up groupoids

Fact

We chose a transfer operator given by a continuous map D.

- For $n \geq 0$, let $X_{n}=X$ and $\Phi_{n}: X_{n} \rightarrow X$ be $\Phi_{n}(x)=\sigma^{n}(x)$.
- Let

$$
Z_{n}:=X_{n} * G=\left\{(z,(x, k-I, y)) \in X \times G: \sigma^{n}(z)=x\right\}
$$

- The imprimitivity groupoid $G^{Z_{n}}$ is isomorphic to the blow up groupoid $G_{n}:=X_{\sigma^{n}} * G *_{\sigma^{n}} X$.
- For $n \geq 1$ define the Φ_{n}-system of measure $\left\{\nu_{n, x}\right\}$ on X via

$$
\nu_{n, x}\{y\}=D\left(\sigma^{n-1}(y)\right) \cdots D(y)
$$

Inductive systems of C^{*}-correspondences

Fact

- For $n \geq 0$, let $\mathcal{X}_{n}={\overline{C_{c}\left(Z_{n}\right)}}^{C^{*}(G)}$ be the corresponding $C^{*}\left(G_{n}\right)-C^{*}(G)$ imprimitivity bimodule.

Theorem

For $n \geq m \geq 0$ define $V_{n, m}: \mathcal{X}_{m} \rightarrow \mathcal{X}_{n}$ via

$$
V_{n, m}(\xi)(z,(x, k-I, y))=\xi\left(\sigma^{n-m}(z),(x, k-I, y)\right)
$$

for all $(z,(x, n-m, y)) \in Z_{n}$. Then $\left\{V_{n, m}\right\}$ is a sequence of adjointable isometries from \mathcal{X}_{m} to \mathcal{X}_{n} such that $V_{n, m} V_{m, k}=V_{n, k}$ for all $n \geq m \geq k \geq 0$. In particular, $\left\{\mathcal{X}_{n}, V_{n, m}\right\}$ is an inductive sequence of Hilbert-modules.

A "limit" groupoid

Fact

- Let the projective system $X_{n} \stackrel{\sigma_{n, m}}{\leftarrow} X_{m}$, where $X_{n}=X$ for every n, and $\sigma_{n, m}=\sigma^{m-n}$ for all $m \geq n$.
- Consider the projective limit

$$
X_{\infty}:=\left\{\underline{x}:=\left(x_{n}\right)_{n \geq 1} \in X^{\mathbb{N}} \mid x_{n}=\sigma\left(x_{n+1}\right)\right\} .
$$

- The map $\sigma_{\infty}: X_{\infty} \rightarrow X_{\infty}$ defined by $\sigma_{\infty}\left(x_{1}, x_{2}, \cdots\right)=\left(\sigma\left(x_{1}\right), x_{1}, x_{2}, \cdots\right)$ is a homeomorphism such that $p_{n} \circ \sigma_{\infty}=\sigma \circ p_{n}$ for all n.

A "limit" groupoid, II

Fact

- We form the right G-space

$$
Z_{\infty}:=X_{\infty} * G=\{(\underline{x},(x, k-I, y)) \in X \times G\}
$$

- Let $G_{\infty}=X_{\infty} * G * X_{\infty}$ be the blow up groupoid.
- We define a full p-system $\left\{\nu_{x}\right\}_{x \in X}$ of measures on X_{∞} via

$$
\begin{aligned}
\int_{X_{\infty}} f_{1}\left(x_{1}\right) \cdots f_{n}\left(x_{n}\right) d \nu_{x}(\underline{x}) & =f_{1}(x) \\
& \left(\sum_{\sigma\left(x_{2}\right)=x} D\left(x_{2}\right) f\left(x_{2}\right) \cdots\right. \\
& \left.\left.\left(\sum_{\sigma\left(x_{n}\right)=x_{n-1}} D\left(x_{n}\right) f\left(x_{n}\right)\right) \cdots\right)\right) .
\end{aligned}
$$

The limit of the inductive system

Theorem
Let $\mathcal{X}_{\infty}={\overline{C_{c}\left(Z_{\infty}\right)}}^{c^{*}(G)}$ be the $C^{*}\left(G_{\infty}\right)-C^{*}(G)$ imprimitivity bimodule. Then \mathcal{X}_{∞} is isomorphic to the inductive limit $\lim _{\rightarrow}\left(\mathcal{X}_{n}, V_{n, m}\right)$ in the sense of [LRO7]. Indeed, $V_{\infty, n}: C_{c}\left(Z_{n}\right) \rightarrow C_{c}\left(Z_{\infty}\right)$ defined via

$$
V_{\infty, n}(\xi)\left(\underline{x},\left(x_{1}, k-I, y\right)\right):=\xi\left(x_{n},\left(x_{1}, k-I, y\right)\right)
$$

extends to an adjointable isometry for all $n \geq 0$ such that $V_{\infty, n} \circ V_{n, m}=V_{\infty, m}$ for all $n \geq m \geq 0$ and $\bigcup_{n \geq 0} V_{\infty, n}\left(\mathcal{X}_{n}\right)$ is dense in \mathcal{X}_{∞}.

Isometries in $\mathcal{L}\left(\mathcal{X}_{n}\right)$

Fact

For $n \geq 0$ and $\xi \in C_{c}\left(Z_{n}\right)$ define

$$
S_{n} \xi(z,(x, k-I, y))=\sqrt{D(x)} \xi(\sigma(z),(\sigma(x), k-1-I, y))
$$

Theorem

S_{n} is an adjointable isometry on \mathcal{X}_{n} for all $n \geq 0$ such that
$V_{n, m} S_{m}=S_{n} V_{n, m}$ for all $n \geq m \geq 0$.
Moreover, for $n=0$ the isometry S_{0} is given by

$$
S_{D}(x, k-I, y)= \begin{cases}\sqrt{D(x)} & \text { if } \sigma(x)=y, k-I=1 \\ 0 & \text { otherwise } .\end{cases}
$$

Example

Fact

- Let $X=\mathbb{T}$ and $\sigma(z)=z^{2}$.
- Let $\left\{m_{1}, m_{2}\right\}$ be a filter bank.
- Set $D(z)=\left|m_{1}(z)\right|^{2} / 2$. Then $\sum_{w^{2}=z} D(w)=1$ for all $z \in \mathbb{T}$.
- The isometry S_{0} equals the isometry $S_{m_{1}}$ defined earlier in the talk.

The unitary extension of S_{0}

Theorem

Let $U \in \mathcal{L}\left(\mathcal{X}_{\infty}\right)$ be defined via

$$
U \xi(\underline{x},(x, k-I, y))=\sqrt{D(x)} \xi\left(\sigma_{\infty}(\underline{x}),(\sigma(x), k-1-I, y)\right)
$$

for $\xi \in C_{c}\left(Z_{\infty}\right)$. The U is a unitary such that $U \circ V_{\infty, n}=V_{\infty, n} \circ S_{n}$ for all $n \geq 0$. In particular, U is the minimal unitary extension of $S_{0}=S_{D}$.

Theorem

U acts as a multiplier on $C^{*}\left(G_{\infty}\right)$ via

$$
(U f)(\underline{x},(x, k-I, y), \underline{y})=\sqrt{D(x)} f\left(\sigma_{\infty}(\underline{x}),(\sigma(x), k-I-1, y), \underline{y}\right)
$$

for all $f \in C_{c}\left(G_{\infty}\right)$ and $(\underline{x},(x, k-I, y), \underline{y}) \in G_{\infty}$.

An aplication: generalized multiresolution analysis

Theorem

Let $Y_{n}:=V_{\infty, n}\left(\mathcal{X}_{n}\right)$ for all $n \geq 0$ and let $Y_{n}=U\left(Y_{n+1}\right)$ for all $n<0$. The sequence of submodules $\left\{Y_{k}\right\}$ and the unitary U form a projective multi-resolution analyses for \mathcal{X}_{∞}. That is, $\left(\left\{Y_{k}\right\}, U\right)$ satisfy the following properties:
(1) Y_{0} is a complemented $C^{*}(G)$-submodule of \mathcal{X}_{∞}.
(2) $Y_{n+1}=U^{-1}\left(Y_{n}\right)$ for all $n \in \mathbb{Z}$.
(3) Y_{n} is a complemented sub-module of Y_{n+1} for all $n \in \mathbb{Z}$.
(1) $\cup_{n \in \mathbb{Z}} Y_{n}$ is dense in \mathcal{X}_{∞}.

If, in addition, S_{0} is a pure isometry, then $\bigcap_{n \in \mathbb{Z}} Y_{n}=\emptyset$.

From groupoids to Hibert spaces: unitary representations of groupoids

Definition

- A unitary representation of (G, λ) is a triple $\left(\mu, G^{(0)} * \mathcal{H}, L\right)$, where μ is a quasi-invariant measure on $G^{(0)}$:

$$
\int_{G^{(0)}} \int_{G_{u}} f(g) \Delta_{\mu}(g) d \lambda_{u}(g) d \mu(u)=\int_{G^{(0)}} \int_{G^{u}} f(g) d \lambda^{u}(g) d \mu(u) .
$$

$G^{(0)} * \mathcal{H}$ is a Hilbert bundle over $G^{(0)}$.
$L: G \rightarrow \operatorname{Iso}(\mathcal{H})=\left\{\left(r(g), L_{g}, s(g)\right): g \in G\right\}$, with
$L_{g}: \mathcal{H}(s(g)) \rightarrow \mathcal{H}(r(g))$ a Hilbert space isomorphism.

- The integrated form of a unitary representation acts on $L^{2}\left(G^{(0)} * \mathcal{H}, \mu\right)$ via

$$
L(f) \xi(u)=\int_{G^{u}} f(g) L_{g}(\xi(s(g))) d \lambda^{u}(g)
$$

Inducing unitary representations to the blow up groupoid

Fact ([Ren14])

- Let $\left(\mu, G^{(0)} * \mathcal{H}, L\right)$ a unitary representation of (G, λ) and let Δ_{μ} the cocycle determined by μ.
- Let $Z=Y * G$ and $\nu=\left\{\nu_{u}\right\}_{u \in G^{(0)}}$ be a Φ-system on Y. The induced representation (m, \mathcal{K}, Ind L) of $Y * G * Y$ is defined via:

There is a measurable function b on Z such that $b(x g) / b(x)=\Delta_{\mu}(g)$ ([Hol17]).
The measure m on Y is given by

$$
\int_{Y} f(x) d m(x)=\int_{G^{(0)}} \int_{Y} f(x) b(x, \Phi(x)) d \nu_{u}(x) d \mu(u) .
$$

The Hilbert bundle $\mathcal{K}=Y * \mathcal{H}=\{(x, \xi): \xi \in \mathcal{H}(\Phi(x))\}$ and the induced action is given by

$$
\text { Ind } L_{(x, g, y)}(y, \xi)=\left(x, L_{g} \xi\right)
$$

Example

Example

- Let $X=\mathbb{T}$ and $\sigma(z)=z^{2}$, and let $\left\{m_{1}, m_{2}\right\}$ be a filter bank. As before, we let D be defined by m_{1}.
- Let $(\mu, X * \mathcal{H}, L)$ be the trivial representation of $G(\mathbb{T}, \sigma): \mu$ is the normalized Haar measure on $\mathbb{T} ; \mathcal{H}$ is the trivial one dimensional Hilbert bundle; L is the trivial representation $L_{(x, k, y)}(y, \xi)=(x, \xi)$.
- The integrated form of L acts on $L^{2}(\mu)$ and $L\left(S_{1}\right) \xi(z)=m_{1}(z) \xi\left(z^{2}\right)$.
- The space \mathbb{T}_{∞} is the 2-adic solenoid and the blow up groupoid is $\mathbb{T}_{\infty} * G * \mathbb{T}_{\infty}$.
- Since μ is invariant, b is constant and we can chose it to be 1 . The Hilbert bundle \mathcal{K} is the trivial bundle.
- Hence the integrated form acts on $L^{2}(m)$ and we recover the minimal unitary extension that defined the wavelet.

References I

屢 Victor Arzumanian and Jean Renault，Examples of pseudogroups and their C^{*}－algebras，Operator algebras and quantum field theory（Rome， 1996），Int．Press，Cambridge，MA，1997，pp．93－104．MR 1491110

圊 Ola Bratteli and Palle E．T．Jorgensen，Isometries，shifts，Cuntz algebras and multiresolution wavelet analysis of scale N，Integral Equations Operator Theory 28 （1997），no．4，382－443．MR 1465320
围 Valentin Deaconu，Groupoids associated with endomorphisms，Trans． Amer．Math．Soc． 347 （1995），no．5，1779－1786．MR 1233967 （95h：46104）
Rehit Dilip Holkar，Topological construction of C＊－correspondences for groupoid C＊－algebras，J．Operator Theory 77 （2017），no．1， 217－241．MR 3614514

References II

Rerius lonescu and Paul S. Muhly, Groupoid methods in wavelet analysis, Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, Contemp. Math., vol. 449, Amer. Math. Soc., Providence, RI, 2008, pp. 193-208. MR 2391805
Nadia S. Larsen and lain Raeburn, Projective multi-resolution analyses arising from direct limits of Hilbert modules, Math. Scand. 100 (2007), no. 2, 317-360. MR 2339372

Raul S. Muhly, Jean N. Renault, and Dana P. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory 17 (1987), no. 1, 3-22. MR 88h:46123
(Jean Renault, A groupoid approach to C*-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266 (82h:46075)

References III

圊 , Cuntz-like algebras, Operator theoretical methods (Timișoara, 1998), Theta Found., Bucharest, 2000, pp. 371-386. MR 1770333

围 , Induced representations and hypergroupoids, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 057, 18. MR 3226993

Thank you Paul for being my adviser and, more importantly, my

 friend!

