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Motivations: Wavelets

Definition
A wavelet is a vector ψ in L2(R) such that the family

{DjT kψ : j , k ∈ Z}

is an orthonormal basis for L2(R), where T ξ(x) = ξ(x − 1), ξ ∈ L2(R),
and Dξ(x) =

√
2ξ(2x).

Fact (Building wavelets via Cuntz isometries [BJ97])
Let σ : T→ T be σ(z) = z2 and {m1,m2} be a filter bank:∑
σ(w)=z mi (w)mj(w) = 2δi ,j .

Then {S1, S2}, where Si (ξ)(z) = mi (z)ξ(σ(z)), ξ ∈ L2(T), is a Cuntz
family of isometries.
Key idea: build the minimal unitary extension of S1.
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The Deaconu-Renault groupoid

Fact ([Ren80, Dea95, AR97, Ren00])
Let X be a compact Hausdorff space and σ : X → X a onto local
homeomorphism.
The Deaconu-Renault groupoid G(X , σ) is defined via

G := G(X , σ) := {(x ,m − n, y) ∈ X × Z× X : σm(x) = σn(y)}

endowed with the operations (x , k, y)(y , l , z) = (x , k + l , z) and
(x , k, y)−1 = (y ,−k, x).
G(X , σ) is an étale locally compact groupoid.
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Filter banks and Cuntz isometries in G(X , σ)

Fact
A filter bank {m1, . . . ,mn} is a family of functions on X such that∑
σ(y)=x mi (y)mj(y) = |σ−1(x)|δi ,j .

[IM08] A filter bank determines a Cuntz family of isometries in C∗(G).

Example ([IM08])
Let X = T, σ(z) = z2, and {m1,m2} a filter bank. If L is the trivial
unitary representation of G(T, σ), we recover the classical wavelet
construction.
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Imprimitivity groupoids

Fact ([MRW87])
We assume now that G is an arbitrary topological groupoid.

Let Z be a free and proper right G-space. We write s : Z → G (0) for
the moment map.
Then G acts diagonally on Z ∗ Z and GZ := (Z ∗ Z )/G is a groupoid
that acts on the left on Z via

[x , y ] · (yg) = xg .

Moreover, GZ and G are equivalent groupoids and Z is an
equivalence between them.
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Blow up groupoids
Fact
We continue to assume that G is a topological groupoid.

Let Y be a l.c. Hausdorff space and Φ : Y → G (0) a continuous open
surjective map.
Then Z := Y ∗ G is a right G-space: the moment map is
s(x , g) = s(g) and (x , g)h = (x , gh).

Theorem
The imprimitivity groupoid GZ = (Z ∗ Z )/G is isomorphic to the groupoid
Y ∗ G ∗ Y , where

Y ∗ G ∗ Y = {(x , g , y) ∈ Y × G × Y : Φ(x) = r(g) and Φ(y) = s(g)},

is endowed with the operations (x , g , y) · (y , h, z) := (x , gh, z) and
(x , g , y)−1 := (y , g−1, x).
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Haar systems on the blow up groupoids
Fact
Assume that G is a topological groupoid endowed with a Haar system
λ = {λu}u∈G(0) and Φ : Y → G (0) is an open continuous surjective map.

We begin by choosing an arbitrary full Φ-system of measures
{νu}u∈G(0) on Y .
The system of measures {αu}u∈G(0) defined via

αu(f ) :=
ˆ

Gu

ˆ
Y

f (y , g)dνr(g)(y)dλu(g), u ∈ G (0),

is a full, equivariant s-system of measures on Z.
It follows that the equation

β(f )(x) :=
ˆ

GΦ(x)

ˆ
Y

f (x , g , y)dνs(g)(y)dλΦ(x)(g), x ∈ Y ,

defines a Haar system on Y ∗ G ∗ Y .
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σ-systems of measures on X
Fact

σ is dual to the injective C∗-endomorphism π : C(X )→ C(X ) defined
by π(f ) := f ◦ σ.
Therefore, π has a left inverse.

Theorem
Every left inverse of π is given by a map LD : C(X )→ C(X ) where D is a
strictly positive, real-valued, continuous function on X such that∑

σ(y)=x
D(y) = 1

for all x ∈ X and LD is defined by the formula

LD(f )(x) :=
∑

σ(y)=x
D(y)f (y), f ∈ C(X ).

Conversely, each such LD is a left inverse of π.
Marius Ionescu Groupoids, Unitary extensions and Wavelets 8 / 24



A sequence of blow up groupoids

Fact
We chose a transfer operator given by a continuous map D.

For n ≥ 0, let Xn = X and Φn : Xn → X be Φn(x) = σn(x).
Let

Zn := Xn ∗ G = {(z , (x , k − l , y)) ∈ X × G : σn(z) = x}.

The imprimitivity groupoid GZn is isomorphic to the blow up groupoid
Gn := Xσn ∗ G ∗σn X.
For n ≥ 1 define the Φn-system of measure {νn,x} on X via

νn,x{y} = D(σn−1(y)) · · ·D(y)
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Inductive systems of C ∗-correspondences

Fact

For n ≥ 0, let Xn = Cc(Zn)C∗(G) be the corresponding
C∗(Gn)− C∗(G) imprimitivity bimodule.

Theorem
For n ≥ m ≥ 0 define Vn,m : Xm → Xn via

Vn,m(ξ)(z , (x , k − l , y)) = ξ(σn−m(z), (x , k − l , y))

for all (z , (x , n −m, y)) ∈ Zn. Then {Vn,m} is a sequence of adjointable
isometries from Xm to Xn such that Vn,mVm,k = Vn,k for all
n ≥ m ≥ k ≥ 0. In particular, {Xn,Vn,m} is an inductive sequence of
Hilbert-modules.
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A ”limit” groupoid

Fact
Let the projective system Xn

σn,m← Xm, where Xn = X for every n, and
σn,m = σm−n for all m ≥ n.
Consider the projective limit

X∞ := {x := (xn)n≥1 ∈ XN | xn = σ(xn+1)}.

The map σ∞ : X∞ → X∞ defined by
σ∞(x1, x2, · · · ) = (σ(x1), x1, x2, · · · ) is a homeomorphism such that
pn ◦ σ∞ = σ ◦ pn for all n.
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A ”limit” groupoid, II

Fact
We form the right G-space
Z∞ := X∞ ∗ G = {(x , (x , k − l , y)) ∈ X × G}
Let G∞ = X∞ ∗ G ∗ X∞ be the blow up groupoid.
We define a full p-system {νx}x∈X of measures on X∞ via

ˆ
X∞

f1(x1) · · · · · fn(xn)dνx (x) = f1(x)( ∑
σ(x2)=x

D(x2)f (x2) · · ·

( ∑
σ(xn)=xn−1

D(xn)f (xn)
)
· · ·
))
.
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The limit of the inductive system

Theorem

Let X∞ = Cc(Z∞)C∗(G) be the C∗(G∞)− C∗(G) imprimitivity bimodule.
Then X∞ is isomorphic to the inductive limit lim→(Xn,Vn,m) in the sense
of [LR07]. Indeed, V∞,n : Cc(Zn)→ Cc(Z∞) defined via

V∞,n(ξ)(x , (x1, k − l , y)) := ξ(xn, (x1, k − l , y))

extends to an adjointable isometry for all n ≥ 0 such that
V∞,n ◦Vn,m = V∞,m for all n ≥ m ≥ 0 and

⋃
n≥0 V∞,n(Xn) is dense in X∞.
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Isometries in L(Xn)

Fact
For n ≥ 0 and ξ ∈ Cc(Zn) define

Snξ(z , (x , k − l , y)) =
√

D(x)ξ(σ(z), (σ(x), k − 1− l , y)).

Theorem
Sn is an adjointable isometry on Xn for all n ≥ 0 such that
Vn,mSm = SnVn,m for all n ≥ m ≥ 0.
Moreover, for n = 0 the isometry S0 is given by

SD(x , k − l , y) =
{√

D(x) if σ(x) = y , k − l = 1
0 otherwise.
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Example

Fact
Let X = T and σ(z) = z2.
Let {m1,m2} be a filter bank.
Set D(z) = |m1(z)|2/2. Then

∑
w2=z D(w) = 1 for all z ∈ T.

The isometry S0 equals the isometry Sm1 defined earlier in the talk.
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The unitary extension of S0

Theorem
Let U ∈ L(X∞) be defined via

Uξ(x , (x , k − l , y)) =
√

D(x)ξ(σ∞(x), (σ(x), k − 1− l , y))

for ξ ∈ Cc(Z∞). The U is a unitary such that U ◦V∞,n = V∞,n ◦ Sn for all
n ≥ 0. In particular, U is the minimal unitary extension of S0 = SD.

Theorem
U acts as a multiplier on C∗(G∞) via

(Uf )(x , (x , k − l , y), y) =
√

D(x)f (σ∞(x), (σ(x), k − l − 1, y), y)

for all f ∈ Cc(G∞) and (x , (x , k − l , y), y) ∈ G∞.
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An aplication: generalized multiresolution analysis

Theorem
Let Yn := V∞,n(Xn) for all n ≥ 0 and let Yn = U(Yn+1) for all n < 0. The
sequence of submodules {Yk} and the unitary U form a projective
multi-resolution analyses for X∞. That is, ({Yk},U) satisfy the following
properties:

1 Y0 is a complemented C∗(G)-submodule of X∞.
2 Yn+1 = U−1(Yn) for all n ∈ Z.
3 Yn is a complemented sub-module of Yn+1 for all n ∈ Z.
4
⋃

n∈Z Yn is dense in X∞.
If, in addition, S0 is a pure isometry, then

⋂
n∈Z Yn = ∅.
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From groupoids to Hibert spaces: unitary representations
of groupoids
Definition

A unitary representation of (G , λ) is a triple (µ,G (0) ∗ H, L), where
I µ is a quasi-invariant measure on G (0):

ˆ
G(0)

ˆ
Gu

f (g)∆µ(g) dλu(g)dµ(u) =
ˆ

G(0)

ˆ
Gu

f (g) dλu(g)dµ(u).

I G (0) ∗ H is a Hilbert bundle over G (0).
I L : G → Iso(H) = {(r(g), Lg , s(g)) : g ∈ G}, with

Lg : H(s(g))→ H(r(g)) a Hilbert space isomorphism.
The integrated form of a unitary representation acts on
L2(G (0) ∗ H, µ) via

L(f )ξ(u) =
ˆ

Gu
f (g)Lg (ξ(s(g))) dλu(g).
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Inducing unitary representations to the blow up groupoid

Fact ([Ren14])
Let (µ,G (0) ∗ H, L) a unitary representation of (G , λ) and let ∆µ the
cocycle determined by µ.
Let Z = Y ∗G and ν = {νu}u∈G(0) be a Φ-system on Y . The induced
representation (m,K, Ind L) of Y ∗ G ∗ Y is defined via:

I There is a measurable function b on Z such that b(xg)/b(x) = ∆µ(g)
([Hol17]).

I The measure m on Y is given by
ˆ

Y
f (x) dm(x) =

ˆ
G(0)

ˆ
Y

f (x) b(x ,Φ(x))dνu(x)dµ(u).

I The Hilbert bundle K = Y ∗ H = {(x , ξ) : ξ ∈ H(Φ(x))} and the
induced action is given by

Ind L(x ,g,y)(y , ξ) = (x , Lgξ).
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Example

Example
Let X = T and σ(z) = z2, and let {m1,m2} be a filter bank. As
before, we let D be defined by m1.
Let (µ,X ∗ H, L) be the trivial representation of G(T, σ): µ is the
normalized Haar measure on T; H is the trivial one dimensional
Hilbert bundle; L is the trivial representation L(x ,k,y)(y , ξ) = (x , ξ).
The integrated form of L acts on L2(µ) and L(S1)ξ(z) = m1(z)ξ(z2).
The space T∞ is the 2-adic solenoid and the blow up groupoid is
T∞ ∗ G ∗ T∞.
Since µ is invariant, b is constant and we can chose it to be 1. The
Hilbert bundle K is the trivial bundle.
Hence the integrated form acts on L2(m) and we recover the minimal
unitary extension that defined the wavelet.
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