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Isomorphisms of Operator Algebras



The definition of a semicrossed product

A C∗-dynamical system (A, α) consists of a C∗-algebra A and a
∗-endomorphism

α : A → A.

An isometric covariant representation (π,V ) of (A, α) consists of a
∗-representation π of A on a Hilbert space H and an isometry
V ∈ B(H) so that

π(a)V = Vπ(α(a)), for all a ∈ A.
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The definition of a semicrossed product

Definition
The semicrossed product A⋊α Z+ is the universal operator algebra
associated with “all” covariant representations of (A, α), i.e., the
universal algebra generated by a faithful copy of A and an isometry
v satisfying the covariance relations.

In the case where α is an automorphism of A, then A⋊α Z+ is
isomorphic to the subalgebra of the crossed product C∗-algebra
A⋊α Z generated by A and the “universal” unitary u
implementing the covariance relations.
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The classification problem

One of the central problems in the study of semicrossed products is
the classification problem, whose study spans more than 50 years.
This problem asks if two semicrossed products are isomorphic as
algebras exactly when the corresponding C∗-dynamical systems are
outer conjugate, that is, unitarily equivalent after a conjugation.

Definition
The C ∗-dynamical systems (A, α) and (B, β) are said to be outer
conjugate if there exists a ∗-isomorphism γ : A → B and a unitary
u ∈ M(A) so that

α(a) = u
(
γ−1 ◦ β ◦ γ(a)

)
u∗, for all a ∈ A.
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The classification problem

The classification problem first appeared in the work of Arveson
(1967) and it was subsequently investigated by Peters (1984),
Hadwin and Hoover (1988), Power (1992) and Davidson and
Katsoulis (2008), who finally settled affirmatively the case where A
is abelian.
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The classification problem

In the general case where A may not be abelian, initial
consideration for the isomorphism problem was given for

• automorphisms with full Connes spectrum, (Muhly and Solel,
2000)

• simple C∗-algebras, (Davidson and Katsoulis, 2008).

Considerable progress was made by

• Davidson and Kakariadis, 2014

who resolved the problem for isometric isomorphisms and
dynamical systems consisting of unital injective endomorphisms of
unital C∗-algebras. Actually the work of Davidson and Kakariadis
went well beyond systems consisting of injective endomorphisms.
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The work of Davidson and Kakariadis

Theorem (Davidson and Kakariadis, 2014)

Let (A, α) and (B, β) be unital C∗-dynamical systems and assume
that one of the following conditions holds

(1) A has trivial center.

(2) A is abelian.

(3) A is finite, i.e., no proper isometries.

(4) α(A)′ is finite.

(5) α(Rα) = Rα, where Rα = ∪k≥1 ker(αk).

(6) α(R⊥
α ) ⊆ R⊥

α .

If the semicrossed products A⋊α Z+ and B ⋊β Z+ are
isometrically isomorphic then the corresponding C∗-dynamical
systems are outer conjugate.



A conjecture and an open problem

Conjecture (Davidson and Kakariadis)

The (isometric) isomorphism problem has a positive resolution for
arbitrary unital C∗-dynamical systems.

Problem: The above conjecture of Davidson and Kakariadis is a
true conjecture! In other words, there exists a dynamical system
(A, α) that does not satisfy any of the six conditions given earlier.
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The open problem

For the second conjecture, we claim that for each i = 1, 2, . . . , 6,
there exists a dynamical system (Ai , αi ) that fails the
corresponding condition (i) from the above list. It is easy to see
then that the dynamical system (⊕6

i=1Ai ,⊕6
i=1αi ) will fail all six

conditions.

The existence of dynamical systems that do not satisfy anyone of
the conditions

(1) A has trivial center.

(2) A is abelian.

(3) A is finite, i.e., no proper isometries.

s a trivial matter.
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The open problem

For condition

(4) α(A)′ is finite.

let H be a separable Hilbert space and let B(H),K (H) denote the
bounded and compact operators respectively acting on H. Let

A4 = B(H)⊗ K (H) + C(I ⊗ I )

acting on H⊗H and let α4 be the unital endomorphism of A
defined as

α4(S + λI ⊗ I ) = λI ⊗ I , S ∈ B(H)⊗ K (H), λ ∈ C.

The dynamical system (A4, α4) fails properrty (4) from the above
list.



The open problem

For condition

(6) α(R⊥
α ) ⊆ R⊥

α , where Rα = ∪k≥1 ker(αk),

let H and K (H) be as in the previous paragraph and consider

A6 = (K (H) + CI )⊕ CI

acting on H⊕H and let α6 be the unital endomorphism of A6

defined as

α6(K + λI , µI ) = (µI , λI ), K ∈ K (H), λ, µ ∈ C.

It is clear that ker(αk
6) = K (H)⊕ 0, for all k ≥ 1, and so

Rα = K (H)⊕ 0. Therefore R⊥
α6

= 0⊕ CI and so

α6(R
⊥
α6
) = CI ⊕ 0 ̸⊆ 0⊕ CI = R⊥

α6
,

i.e., (A6, α6) does not satisfy (6).
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Note also that
α6(Rα6) = 0 ̸= Rα6

and so (A6, α6) does not satisfy

(5) α(Rα) = Rα

as well.



The conjecture

Theorem (K. and Ramsey)

Let (A, α) and (B, β) be two unital C∗-dynamical systems. Then
A⋊α Z+ and B ⋊β Z+ are isometrically isomorphic if and only
(A, α) and (B, β) are outer conjugate.

Strategy of the proof: Davidson and Kakariadis noticed that if

ψ : A⋊α Z+ −→ B ⋊β Z+

is an isometric isomorphism so that the zero Fourier coefficient of
ψ(v) is very small (less than 0.15), then (A, α) and (B, β) are
outer conjugate. We construct an automorhism ρψ of B ⋊β Z+

that ρψ ◦ ψ satisfies that property.
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Multivariable systems and tensor algebras

A multivariable C∗-dynamical system is a pair (A, α) consisting of
a unital C∗-algebra A along with unital ∗-endomorphisms
α = (α1, . . . , αn) of A into itself.

A row isometric covariant representation of (A, α) consists of a
non-degenerate ∗-representation π of A on a Hilbert space H and
a row isometry V = (V1,V2, . . . ,Vn) acting on H(n) so that
π(a)Vi = Viπ(α(a)), for all a ∈ A and i = 1, 2, . . . , n.

The tensor algebra T +(A, α) is the universal algebra generated by
a copy of A and a row isometry v satisfying the covariance
relations.
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The multivariable isomorphism problem

In the case where A is abelian, tensor algebras of multivariable
systems were first studied in detail by Davidson and Katsoulis in
2011.

These authors developed a satisfactory dilation theory and
provided invariants of a topological nature for algebraic
isomorphisms, which in certain cases turned out to be complete.

Specifically, Davidson and Katsoulis utilized the concept of
piecewise conjugacy for classical multivariable dynamical systems
and they established that if the tensor algebras are algebraically
isomorphic then the two dynamical systems must be piecewise
conjugate.
However, the converse could only be established for tensor algebras
with n = 2 or 3 and some other cases.
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The multivariable isomorphism problem

Conjecture (Davidson and Katsoulis, 2011)

Let (X , α) and (Y, β) be classical dynamical systems on compact
Hausdorff spaces. Then T +(C (X ), α) and T +(C (Y), β) are
isomorphic as algebras if and only if (X , α) and (Y, β) are
piecewise conjugate.

In order to study this conjecture Katsoulis Kakariadis utilized the
framework of C∗-correspondences.



Multivariable systems and tensor algebras

Muhly and Solel placed semicrossed products and (non-selfadjoint)
graph algebras and their study into a much broader context.

Definition
If (X ,A) is a C∗-correspondence over a C∗-algebra A, then the
tensor algebra T +(X ,A) is the non-selfsadjoint norm-closed
subalgebra of the Cuntz-Pimsner-Toeplitz algebra T (X ,A)
generated by the faithful copies of X and A.
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Some explanation

C∗-correspondence (X ,A):

X is a closed bimodule of C ⊆ B(H)
satisfying

X ∗X ⊆ A

Cuntz-Pimsner-Toeplitz algebra T (X ,A): the C∗-subalgebra of
B(H⊗ ℓ2(N)) generated by

A⊗ I and X ⊗ S ,

where S is the forward shift on ℓ2(N).

T +(X ,A) ⊆ T (X ,A) is generated by X and A.
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Some familiar examples

• Let (π,V ) be a covariant representation of (A, α) on H with
π faithful.

Then the tensor algebra for the C∗-correspondence

Aα := (Vπ(A), π(A))

is completely isometrically isomorphic to A⋊α Z+.

• Let (π,V1,V2, . . . ,Vn) be a covariant representation of the
system (A, α = (α1, α2, . . . , αn)) with π faithful. Then the
tensor algebra for the C∗-correspondence

Aα := (
n∑

i=1

Viπ(A), π(A))

is completely isometrically isomorphic to A⋊α Z+.
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Another conjecture

Conjecture (Muhly and Solel, 2000)

Consider C∗-correspondences (X ,A) and (Y ,B). Then T +(X ,A)
and T +(Y ,B) are completely isometrically isomorphic if and only
if (X ,A) and (Y ,B) are unitarily equivalent, i.e., there exists a
∗-homomorphism ρ : A → B and ρ-unitary U : X → Y .

Lemma
If (X ,A) and (Y ,B) are unitarily equivalent, then T +(X ,A) and
T +(Y ,B) are completely isometrically isomorphic.
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Solving a special case of the conjecture

Lemma
If Aα and Bβ are the correspondences coming from multivariable
systems (A, α) and (B, β) then Aα and Bβ are unitarily equivalent
after a conjugation if there exists unitary matrix
U = [ui ,j ] ∈ Mn,m(A) and ∗-isomorphism γ : A → B so thatα1(a) · · · 0

...
. . .

...
0 · · · αn(a)

 = U

γ
−1β1γ1(a) · · · 0

...
. . .

...
0 · · · γ−1βmγ1(a)

U∗,

for all a ∈ A.



Theorem (Kakariadis and Katsoulis, 2014)

Under various conditions for automorphic unital C∗-dynamical
systems, if ψ : T +(A, α) → T +(B, β) is a completely isometric
isomorphism then (A, α) and (B, β) are unitarily equivalent after a
conjugation.

Theorem (Katsoulis and Ramsey, 2021)

If ψ : T +(A, α) → T +(B, β) is a completely isometric
isomorphism of unital C∗-dynamical systems, then (A, α) and
(B, β) are unitarily equivalent after a conjugation.
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Stable Isomorphisms of Operator Algebras



The motivation comes from

Theorem (Dor-On, Eilers and Geffen)

Let G1,G2 be row finite graphs and let K denote the compact
operators. Then the following are equivalent:

(i) The algebras T +(G1)⊗ K and T +(G2)⊗ K are completely
isometrically isomorphic

(ii) The algebras T +(G1) and T +(G2) are completely
isometrically isomorphic

(iii) The graphs G1 and G2 are isomorphic

The equivalence of (ii) and (iii) is an earlier result of Katsoulis and
Kribs (2004) and independently Solel (2004).

But the above Theorem is part of the program for resolving the
Muhly Solel isomorphism problem and one needs to allow K to be
any C∗-algebra!
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Theorem
Let A and B be operator algebras with c0-isomorphic diagonals
and let K denote the compact operators. If A⊗K and B ⊗ K are
isometrically isomorphic, then A and B are isometrically
isomorphic.

Corollary

Let A and B be operator algebras with c0-isomorphic diagonals
and let K denote the compact operators. If A⊗K and B ⊗ K are
completely isometrically isomorphic, then A and B are completely
isometrically isomorphic.
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Theorem
Let A and B be analytic operator algebras with c0-isomorphic
diagonals and let KA and KB be operator algebras containing the
compact operators. If A⊗ KA and B ⊗ KB are isometrically
isomorphic, then KA and KB are isometrically isomorphic and the
algebras A and B are bicontinuously isomorphic.

Corollary

Let G1,G2 be countable graphs and let K denote an operator
algebra containing the compact operators. Then the following are
equivalent:

(i) The algebras T +(G1)⊗ K and T +(G2)⊗ K are isometrically
isomorphic.

(ii) The algebras T +(G1) and T +(G2) are isomorphic as Banach
algebras.

(iii) The graphs G1 and G2 are isomorphic.
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