
Aperiodicity for Hilbert bimodules and C ∗-inclusions

Bartosz K. Kwaśniewski, University of Białystok

Noncommutative Analysis at the Technion, June 26-July 1, 2022, Haifa

Based on

(2018) "Aperiodicity, topological freeness and pure outerness"
(2020) "Noncommutative Cartan C*-subalgebras"
(2021) "Essential crossed products for inverse semigroup actions"
(2022) "Aperiodicity: the almost extension property and pseudo-expectations"

BKK, Ralf Meyer

Paul Muhly, Baruch Solel

(2000) "On the Morita equivalence of tensor algebras"

Bartosz K. Kwaśniewski, University of Białystok Aperiodicity for Hilbert bimodules and C∗-inclusions 1 / 17



1) Aperiodicity for Hilbert bimodules
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Let α : A→ A be an automorphism of a C∗-algebra A.

Def.

α is purely outer if α|I is outer for every non-zero α-invariant I / A

α is topologically free if {[π] ∈ Â : [π ◦ α] = [π]} has empty interior in Â
(O’Donovan 1975, Zeller-Meier 1968)

Thm. (Kishimoto 1982)(
ΓBor(α|I) 6= {1} for all

non-zero α-invariant I / A

)
︸ ︷︷ ︸

spectrally non-trivial “Pasnicu-Phillips”

⇐⇒
(
∀b∈A ∀06=D⊆A hereditary ∀ε>0 ∃a∈D+

1

‖α(a) · b · a‖ < ε

)
︸ ︷︷ ︸

aperiodic “Muhly-Solel”

Thm. (Pedersen-Olesen 1982) Assume A is separable
Then α is aperiodic ⇐⇒ α is topologically free and TFAE:

1 αn is aperiodic for all n > 0
2 αn is topologically free for all n > 0
3 A detects ideals in A oα Z, i.e. 0 6= I / A oα Z =⇒ A ∩ I 6= 0.
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Let α : A→ A be an automorphism of a C∗-algebra A.
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α is purely outer if α|I is outer for every non-zero α-invariant I / A

α is topologically free if {[π] ∈ Â : [π ◦ α] = [π]} has empty interior in Â
(O’Donovan 1975, Zeller-Meier 1968)

Thm. (Kishimoto 1982)(
ΓBor(α|I) 6= {1} for all

non-zero α-invariant I / A

)
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spectrally non-trivial “Pasnicu-Phillips”

⇐⇒
(
∀b∈A ∀06=D⊆A hereditary ∀ε>0 ∃a∈D+

1

‖α(a) · b · a‖ < ε

)
︸ ︷︷ ︸

aperiodic “Muhly-Solel”

Ex. α : A ∼−→ A an automorphism =⇒ Mα := A is a Hilbert A-bimodule with
x · a := xa, a · x := α(a)x , 〈x , y〉A := x∗y A〈x , y〉 := α−1(xy∗)

Def. (Muhly-Solel 2000, K-Meyer) Let M be a normed A-bimodule
M is aperiodic if ∀x∈M ∀06=D⊆A hereditary ∀ε>0 ∃a∈D+

1
‖a · x · a‖ < ε
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Def.
M is a Hilbert A-bimodule if M is a right Hilbert A-module and a left Hilbert
A-module such that A〈x , y〉z = x〈y , z〉A, x , y , z ∈ M.

Rem. If 〈M,M〉A = A〈M,M〉 = A, M is a Morita-Rieffel equivalence bimodule.
In general, M induces a partial homeomorphism M̂ of Â:

Â ⊇ ̂〈M,M〉A
M̂−→ ̂A〈M,M〉 ⊆ Â

where M̂([π]) acts on M ⊗π Hπ by left multiplication on M.

Def. I / A is M-invariant if MI = IM. Then M|I := MI is a Hilbert I-bimodule

Ex. If Mα := A is associated to α : A ∼−→ A, then M̂α([π]) = [π ◦ α],
MαI = IMα ⇐⇒ α(I) = I, and then Mα|I = Mα|I

α(·) = u(·)u∗ for a unitary u ∈M(A) ⇐⇒ Mα
∼= A
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Def. Let M be a Hilbert A-bimodule
M is purely outer if M|I 6∼= I for every non-zero M-invariant I / A

M is topologically free:
{

[π] : M̂([π]) = [π]
}
has empty interior in Â

M is aperiodic: ∀x∈M ∀06=D⊆A hereditary ∀ε>0 ∃a∈D+
1
‖a · x · a‖ < ε

Thm. (K-Meyer 2018, 2022) For any Hilbert A-module we have(
topologically

free

) (
aperiodic

)
A ess. separable

hh

+3
(

purely
outer

)

A ess. Type I

dd

+3

A ess. simple

dd

Thm. (K-Meyer 2018) Assume A is ess. separable or ess. Type I. TFAE:
1 M⊗n is aperiodic for all n > 0
2 M⊗n is topologically free for all n > 0
3 A detects ideals in A oM Z = ⊕n∈ZM⊗n = OM
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Let B = {Bg}g∈G be a Fell bundle over a discrete group G and let A = B1.
C∗r (B) =

⊕
g∈G Bg is G-graded and there is a faithful E : C∗r (B)→ A ⊆ C∗r (B)

Def. We say that B = {Bg}g∈G is

purely outer: if Bg is purely outer for every g ∈ G \ {1}

topologically free: if Bg is topologically free for every g ∈ G \ {1}

aperiodic: if Bg is aperiodic for every g ∈ G \ {1}

Def. Let A ⊆ B be a C∗-inclusion.

A detects ideals in B if 0 6= I / B =⇒ A ∩ I 6= 0.

A supports B if for every b ∈ B+ \ {0} there is a ∈ A+ \ {0} with a - b
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2) Aperiodic C ∗-inclusions A ⊆ B
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Def. (K-Meyer 2021)
A ⊆ B is aperiodic if the Banach A-bimodule B/A is aperiodic.

Rem. If E : B → A a conditional expectation, then B/A ∼= ker E and thus
A ⊆ B aperiodic ⇐⇒ ∀b∈ker E ∀0 6=D⊆A hereditary ∀ε>0 ∃a∈D+

1
‖a · b · a‖ < ε

Ex. A ⊆ C∗r (B) =
⊕

g∈G Bg aperiodic ⇐⇒ B = {Bg}g∈G aperiodic

Def. (Pitts 2012) Let I(A) be the injective envelope of A
Pseudo-expectation for A ⊆ B is a ccp map E : B → I(A) with E |A = id

Thm. (K-Meyer 2022)
If A ⊆ B is aperiodic it admits a unique pseudo-expectation E and then
E : B → I(A) is faithful ⇐⇒ A supports all C with A ⊆ C ⊆ B

⇐⇒ A detects ideals in all C with A ⊆ C ⊆ B
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Thm. (K-Meyer 2022) Let B = {Bg}g∈G be a Fell bundle and A := B1

Assume A is ess. separable or ess. Type I. TFAE:
(1) A ⊆ C∗r (B) aperiodic (equivalently B is aperiodic or topologically free)
(2) A supports all intermediate C∗-algebras A ⊆ C ⊆ C∗r (B)
(3) A detects ideals in all intermediate C∗-algebras A ⊆ C ⊆ C∗r (B)
(4) A detects ideals in C := C∗r ({Bh}h∈H) for all cyclic subgroups H ⊆ G

The above theorem extends to Fell bundles over inverse semigroups
and in particular can be applied to Fell bundles over étale groupoids!!!
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Ex. (G,Σ) twisted étale groupoid with locally compact Hausdorff unit space X .
C0(X ) ⊆ C∗r (G,Σ) aperiodic ⇐⇒ G is topologically free, i.e. for every open
bisection U ⊆ G \ X , the set {x ∈ X : G(x) ∩ U 6= ∅} has empty interior in X .
Rem. There is always a pseudo-expectation induced by restriction f 7→ f |X

Eess : C∗r (G,Σ)→ B(X )/M(X ) = I(C0(X ))
It descends to a faithful map on C∗ess(G,Σ) := C∗r (G,Σ)/N where N ⊆ ker Eess

Def. (K-Meyer 2021)
We call C∗ess(G,Σ) = C∗r (G,Σ)/N the essential groupoid algebra.

Cor. TFAE:
1 C0(X ) ⊆ C∗ess(G,Σ) aperiodic
2 G is topologically free
3 C0(X ) supports all intermediate C∗-algebras C0(X ) ⊆ C ⊆ C∗ess(G,Σ)
4 C0(X ) detects ideals in all intermediate C∗-algebras C0(X ) ⊆ C ⊆ C∗ess(G,Σ)
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3) Cartan C ∗-inclusions A ⊆ B
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Def. (Kumjian 1986) A C∗-inclusion A ⊆ B is regular if it is nondegenerate
and the normalizers {b ∈ B : bAb∗ ⊆ A, b∗Ab ⊆ A} generate B.

Prop. (Exel 2011) A ⊆ B is regular ⇐⇒ A = B1 and B =
∑

t∈S Bt is graded by
a unital inverse semigroup S, i.e. B∗t = Bt∗ , Bt · Bs ⊆ Bts , and Bt ⊆ Bs if t ≤ s

Thm. (K-Meyer 2020+2022)
Assume A ⊆ B is regular with a faithful cond. expectation E : B → A and
A = C0(X ) is commutative. TFAE:

1 A is a MASA in B, i.e. a Cartan subalgebra in the sense of Renault
2 A ⊆ B is aperiodic
3 A ⊆ B has a unique expectation (in fact a unique pseudo-expectation)
4 A supports all intermediate C∗-algebras A ⊆ C ⊆ B
5 A detects ideals in all intermediate C∗-algebras A ⊆ C ⊆ B
6 B ∼= C∗r (G,Σ) where G is étale, Hausdorff, top. free with the unit space X
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Def. (Exel 2011) A virtual commutant of A ⊆ B is an A-bimodule map I → B
defined on an ideal I / A. It is trivial if it has range in A.

Thm. (K-Meyer 2020)
Assume A ⊆ B is regular with a faithful cond. expectation E : B → A and
that X := Prim(A) is Hausdorff. TFAE:

1 A ⊆ B is a noncommutative Cartan inclusion in the sense of Exel,
i.e. it has no non-trivial virtual commutants

2 A′ ∩M(B) = ZM(A)
3 A ⊆ B has a unique conditional expectation
4 B ∼= C∗r (G,B) for a purely outer Fell bundle B = {Bγ}γ∈G over a
Hausdorff étale groupoid G with unit space X and A = C∗r (X ,B)
(both G and B are uniquely determined by A ⊆ B)

If A is ess. Type I or ess. simple, then the above are equivalent to
5 A ⊆ B is aperiodic.

Rem. A ⊆ B noncommutative Cartan does not imply A detect ideals in B
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Thm. Let A ⊆ B be a regular C ∗-inclusion with A simple. TFAE:
1 A ⊆ B is a C∗-irreducible (Rørdam 2021), i.e. all intermediate

C∗-algebras A ⊆ C ⊆ B are simple
2 A′ ∩M(B) = C · 1, i.e. A ⊆ B is irreducible, and B is simple
3 there is a unique faithful conditional expectation E : B → A
4 A ⊆ B is a noncommutative Cartan subalgebra in the sense of Exel
5 B ∼= C∗r (B) for an outer Fell bundle B = (Bg )g∈G over a discrete

group G with the unit fiber B1 = A
(B and G are uniquely determined by A ⊆ B)

6 A ⊆ B is an aperiodic inclusion and the necessarily unique
pseudo-expectation is faithful

7 A ⊆ B supports all intermediate C∗-algebras A ⊆ C ⊆ B

Conjecture: If the above holds, then
every intermediate C∗-subalgebra A ⊆ C ⊆ B is of the form
C = C∗r ((Bh)h∈H) for a subgroup 1 ⊆ H ⊆ G
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