Aperiodicity for Hilbert bimodules and C^* -inclusions

Bartosz K. Kwaśniewski, University of Białystok

Noncommutative Analysis at the Technion, June 26-July 1, 2022, Haifa

Based on

(2018) "Aperiodicity, topological freeness and pure outerness"

(2020) "Noncommutative Cartan C*-subalgebras"

(2021) "Essential crossed products for inverse semigroup actions"

(2000) "On the Morita equivalence of tensor algebras"

Paul Muhly, Baruch Solel

1) Aperiodicity for Hilbert bimodules

Let $\alpha : A \to A$ be an automorphism of a C^* -algebra A.

Def.

- α is **purely outer** if $\alpha|_I$ is outer for every non-zero α -invariant $I \triangleleft A$
- α is topologically free if {[π] ∈ Â : [π ∘ α] = [π]} has empty interior in Â
 (O'Donovan 1975, Zeller-Meier 1968)

Thm. (Kishimoto 1982)

$$\begin{array}{c} \mathsf{\Gamma}_{\mathrm{Bor}}(\alpha|_{I}) \neq \{1\} \text{ for all} \\ \text{non-zero } \alpha\text{-invariant } I \triangleleft A \end{array} \end{array} \right) \Longleftrightarrow \left(\begin{array}{c} \forall_{b \in A} \forall_{0 \neq D \subseteq A \text{ hereditary }} \forall_{\varepsilon > 0} \exists_{a \in D_{1}^{+}} \\ \|\alpha(a) \cdot b \cdot a\| < \varepsilon \end{array} \right)$$

spectrally non-trivial "Pasnicu-Phillips"

aperiodic "Muhly-Solel"

Thm. (Pedersen-Olesen 1982) Assume A is separable

Then α is aperiodic $\iff \alpha$ is topologically free and TFAE:

- **①** α^n is aperiodic for all n > 0
- **2** α^n is topologically free for all n > 0
- **3** A detects ideals in $A \rtimes_{\alpha} \mathbb{Z}$, i.e. $0 \neq I \triangleleft A \rtimes_{\alpha} \mathbb{Z} \Longrightarrow A \cap I \neq 0$.

Let $\alpha : A \rightarrow A$ be an automorphism of a C^* -algebra A.

Def.

- α is **purely outer** if $\alpha|_I$ is outer for every non-zero α -invariant $I \triangleleft A$
- α is topologically free if {[π] ∈ Â : [π ∘ α] = [π]} has empty interior in Â
 (O'Donovan 1975, Zeller-Meier 1968)

Thm. (Kishimoto 1982)

$$\left(\begin{array}{c} \mathsf{\Gamma}_{\mathrm{Bor}}(\alpha|_{I}) \neq \{1\} \text{ for all} \\ \text{non-zero } \alpha\text{-invariant } I \triangleleft A \end{array}\right) \Longleftrightarrow \left(\begin{array}{c} \forall_{b \in \mathcal{A}} \forall f_{b} \in \mathcal{A} \\ \forall f_{b} \in \mathcal{A$$

spectrally non-trivial "Pasnicu-Phillips"

$$egin{aligned} & \forall_{b\in A} \, orall_{0
eq D\subseteq A} ext{ hereditary } orall_{arepsilon>0} \exists_{m{a}\in D_1^+} & \ & \|lpha(m{a})\cdotm{b}\cdotm{a}\| < arepsilon & \ & \end{pmatrix} \end{aligned}$$

aperiodic "Muhly-Solel"

Ex. $\alpha : A \xrightarrow{\sim} A$ an automorphism $\Longrightarrow M_{\alpha} := A$ is a Hilbert A-bimodule with $x \cdot a := xa$, $a \cdot x := \alpha(a)x$, $\langle x, y \rangle_A := x^*y$ $_A \langle x, y \rangle := \alpha^{-1}(xy^*)$

Def. (Muhly-Solel 2000, K-Meyer) Let M be a normed A-bimodule

M is **aperiodic** if $\forall_{x \in M} \forall_{0 \neq D \subseteq A \text{ hereditary}} \forall_{\varepsilon > 0} \exists_{a \in D_1^+} ||a \cdot x \cdot a|| < \varepsilon$

Def.

M is a **Hilbert** *A*-**bimodule** if *M* is a right Hilbert *A*-module and a left Hilbert *A*-module such that $_A\langle x, y \rangle z = x \langle y, z \rangle_A$, $x, y, z \in M$.

Rem. If $\overline{\langle M, M \rangle}_A = {}_A \overline{\langle M, M \rangle} = A$, *M* is a Morita-Rieffel equivalence bimodule. In general, *M* induces a **partial homeomorphism** \widehat{M} of \widehat{A} :

$$\widehat{A} \supseteq \langle \widehat{M, M} \rangle_A \xrightarrow{\widehat{M}} {}_A \widehat{\langle M, M} \rangle \subseteq \widehat{A}$$

where $\widehat{M}([\pi])$ acts on $M \otimes_{\pi} H_{\pi}$ by left multiplication on M.

Def. $I \triangleleft A$ is *M*-invariant if MI = IM. Then $M|_I := MI$ is a Hilbert *I*-bimodule

Ex. If
$$M_{\alpha} := A$$
 is associated to $\alpha : A \xrightarrow{\sim} A$, then $\widehat{M_{\alpha}}([\pi]) = [\pi \circ \alpha]$,
 $M_{\alpha}I = IM_{\alpha} \iff \alpha(I) = I$, and then $M_{\alpha}|_{I} = M_{\alpha|_{I}}$
 $\alpha(\cdot) = u(\cdot)u^{*}$ for a unitary $u \in \mathcal{M}(A) \iff M_{\alpha} \cong A$

Def. Let *M* be a **Hilbert** *A*-**bimodule**

- *M* is **purely outer** if $M|_I \ncong I$ for every non-zero *M*-invariant $I \triangleleft A$
- *M* is topologically free: $\left\{ [\pi] : \widehat{M}([\pi]) = [\pi] \right\}$ has empty interior in \widehat{A}
- *M* is aperiodic: $\forall_{x \in M} \forall_{0 \neq D \subseteq A \text{ hereditary}} \forall_{\varepsilon > 0} \exists_{a \in D_1^+} ||a \cdot x \cdot a|| < \varepsilon$

Thm. (K-Meyer 2018) Assume A is ess. separable or ess. Type I. TFAE:

- $M^{\otimes n}$ is aperiodic for all n > 0
- **2** $M^{\otimes n}$ is topologically free for all n > 0
- **3** A detects ideals in $A \rtimes_M \mathbb{Z} = \overline{\bigoplus_{n \in \mathbb{Z}} M^{\otimes n}} = \mathcal{O}_M$

Let $\mathcal{B} = \{B_g\}_{g \in G}$ be a **Fell bundle over a discrete group** G and let $A = B_1$. $C_r^*(\mathcal{B}) = \bigoplus_{g \in G} B_g$ is G-graded and there is a faithful $E : C_r^*(\mathcal{B}) \to A \subseteq C_r^*(\mathcal{B})$

Def. We say that $\mathcal{B} = \{B_g\}_{g \in G}$ is

- purely outer: if B_g is purely outer for every $g \in G \setminus \{1\}$
- topologically free: if B_g is topologically free for every $g \in G \setminus \{1\}$
- aperiodic: if B_g is aperiodic for every $g \in G \setminus \{1\}$

Def. Let $A \subseteq B$ be a C^* -inclusion.

- A detects ideals in B if $0 \neq I \triangleleft B \Longrightarrow A \cap I \neq 0$.
- A supports B if for every $b \in B^+ \setminus \{0\}$ there is $a \in A^+ \setminus \{0\}$ with $a \preceq b$

Let $\mathcal{B} = \{B_g\}_{g \in G}$ be a **Fell bundle over a group** G and let $A = B_1$.

Def. We say that $\mathcal{B} = \{B_g\}_{g \in G}$ is

- purely outer: if B_g is purely outer for every $g \in G \setminus \{1\}$
- topologically free: if B_g is topologically free for every $g \in G \setminus \{1\}$
- aperiodic: if B_g is aperiodic for every $g \in G \setminus \{1\}$

Def. Let $A \subseteq B$ be a C^* -inclusion.

- A detects ideals in B if $0 \neq I \triangleleft B \Longrightarrow A \cap I \neq 0$.
- A supports B if for every $b \in B^+ \setminus \{0\}$ there is $a \in A^+ \setminus \{0\}$ with $a \preceq b$

Thm.(K-Meyer 2018, 2020)

Let $\mathcal{B} = \{B_g\}_{g \in G}$ be a **Fell bundle over a group** G and let $A = B_1$.

Def. We say that $\mathcal{B} = \{B_g\}_{g \in G}$ is

- purely outer: if B_g is purely outer for every $g \in G \setminus \{1\}$
- topologically free: if B_g is topologically free for every $g \in G \setminus \{1\}$
- aperiodic: if B_g is aperiodic for every $g \in G \setminus \{1\}$

Def. Let $A \subseteq B$ be a C^* -inclusion.

- A detects ideals in B if $0 \neq I \triangleleft B \Longrightarrow A \cap I \neq 0$.
- A supports B if for every $b \in B^+ \setminus \{0\}$ there is $a \in A^+ \setminus \{0\}$ with $a \preceq b$

Thm.(K-Meyer 2018, 2020)

2) Aperiodic C^* -inclusions $A \subseteq B$

Def. (K-Meyer 2021)

 $A \subseteq B$ is **aperiodic** if the Banach A-bimodule B/A is aperiodic.

Rem. If $E : B \to A$ a conditional expectation, then $B/A \cong \ker E$ and thus $A \subseteq B$ aperiodic $\iff \forall_{b \in \ker E} \forall_{0 \neq D \subseteq A \text{ hereditary }} \forall_{\varepsilon > 0} \exists_{a \in D_1^+} ||a \cdot b \cdot a|| < \varepsilon$

Ex.
$$A \subseteq C_r^*(\mathcal{B}) = \overline{\bigoplus_{g \in G} B_g}$$
 aperiodic $\iff \mathcal{B} = \{B_g\}_{g \in G}$ aperiodic

Def. (Pitts 2012) Let I(A) be the injective envelope of A

Pseudo-expectation for $A \subseteq B$ is a ccp map $E : B \to I(A)$ with $E|_A = id$

Thm. (K-Meyer 2022)

If $A \subseteq B$ is aperiodic it admits a **unique pseudo-expectation** E and then

 $E: B \to I(A) \text{ is faithful} \iff A \text{ supports all } C \text{ with } A \subseteq C \subseteq B$ $\iff A \text{ detects ideals in all } C \text{ with } A \subseteq C \subseteq B$

Thm. (K-Meyer 2022) Let $\mathcal{B} = \{B_g\}_{g \in G}$ be a Fell bundle and $A := B_1$

Assume A is ess. separable or ess. Type I. TFAE:

- (1) $A \subseteq C_r^*(\mathcal{B})$ aperiodic (equivalently \mathcal{B} is aperiodic or topologically free)
- (2) A supports all intermediate C^* -algebras $A \subseteq C \subseteq C^*_r(\mathcal{B})$
- (3) A detects ideals in all intermediate C^* -algebras $A \subseteq C \subseteq C^*_r(\mathcal{B})$
- (4) A detects ideals in $C := C_r^*(\{B_h\}_{h \in H})$ for all cyclic subgroups $H \subseteq G$

The above theorem extends to **Fell bundles over inverse semigroups** and in particular can be applied to **Fell bundles over étale groupoids**!!!

Ex. (\mathcal{G}, Σ) twisted étale groupoid with locally compact Hausdorff unit space X. $C_0(X) \subseteq C_r^*(\mathcal{G}, \Sigma)$ aperiodic $\iff \mathcal{G}$ is **topologically free**, i.e. for every open bisection $U \subseteq \mathcal{G} \setminus X$, the set $\{x \in X : \mathcal{G}(x) \cap U \neq \emptyset\}$ has empty interior in X.

Rem. There is always a pseudo-expectation induced by restriction $f \mapsto f|_X$

$$E_{ess}: C^*_r(\mathcal{G}, \Sigma) \to \mathcal{B}(X)/\mathcal{M}(X) = I(C_0(X))$$

It descends to a faithful map on $C^*_{ess}(\mathcal{G}, \Sigma) := C^*_r(\mathcal{G}, \Sigma) / \mathcal{N}$ where $\mathcal{N} \subseteq \ker E_{ess}$

Def. (K-Meyer 2021)

We call $C^*_{ess}(\mathcal{G}, \Sigma) = C^*_r(\mathcal{G}, \Sigma) / \mathcal{N}$ the essential groupoid algebra.

Cor. TFAE:

- 1 $C_0(X) \subseteq C^*_{ess}(\mathcal{G}, \Sigma)$ aperiodic
- **2** \mathcal{G} is topologically free
- **3** $C_0(X)$ supports all intermediate C^* -algebras $C_0(X) \subseteq C \subseteq C^*_{ess}(\mathcal{G}, \Sigma)$
- **(**) $C_0(X)$ detects ideals in all intermediate C^* -algebras $C_0(X) \subseteq C \subseteq C^*_{ess}(\mathcal{G}, \Sigma)$

3) Cartan C^{*}-inclusions $A \subseteq B$

Def. (Kumjian 1986) A C*-inclusion $A \subseteq B$ is regular if it is nondegenerate and the normalizers $\{b \in B : bAb^* \subseteq A, b^*Ab \subseteq A\}$ generate B.

Prop. (Exel 2011) $A \subseteq B$ is regular $\iff A = B_1$ and $B = \overline{\sum_{t \in S} B_t}$ is graded by a unital inverse semigroup S, i.e. $B_t^* = B_{t^*}$, $B_t \cdot B_s \subseteq B_{ts}$, and $B_t \subseteq B_s$ if $t \leq s$

Thm. (K-Meyer 2020+2022)

Assume $A \subseteq B$ is regular with a faithful cond. expectation $E : B \to A$ and $A = C_0(X)$ is **commutative**. TFAE:

- **1** A is a MASA in B, i.e. a **Cartan subalgebra** in the sense of Renault
- **2** $A \subseteq B$ is aperiodic
- **3** $A \subseteq B$ has a unique expectation (in fact a unique pseudo-expectation)
- **④** A supports all intermediate C^* -algebras $A \subseteq C \subseteq B$
- **5** A detects ideals in all intermediate C^* -algebras $A \subseteq C \subseteq B$
- **(**) $B \cong C^*_r(\mathcal{G}, \Sigma)$ where \mathcal{G} is étale, Hausdorff, top. free with the unit space X

Def. (Exel 2011) A virtual commutant of $A \subseteq B$ is an A-bimodule map $I \rightarrow B$ defined on an ideal $I \triangleleft A$. It is trivial if it has range in A.

Thm. (K-Meyer 2020)

Assume $A \subseteq B$ is regular with a faithful cond. expectation $E : B \to A$ and that X := Prim(A) is Hausdorff. TFAE:

 A ⊆ B is a noncommutative Cartan inclusion in the sense of Exel, i.e. it has no non-trivial virtual commutants

- **③** $A \subseteq B$ has a unique conditional expectation
- B ≃ C^{*}_r(G, B) for a purely outer Fell bundle B = {B_γ}_{γ∈G} over a Hausdorff étale groupoid G with unit space X and A = C^{*}_r(X, B) (both G and B are uniquely determined by A ⊆ B)
- If A is ess. Type I or ess. simple, then the above are equivalent to (a) $A \subseteq B$ is aperiodic.

Rem. $A \subseteq B$ noncommutative Cartan does not imply A detect ideals in B

Thm. Let $A \subseteq B$ be a regular C^* -inclusion with A simple. TFAE:

- A ⊆ B is a C*-irreducible (Rørdam 2021), i.e. all intermediate C*-algebras A ⊆ C ⊆ B are simple
- **2** $A' \cap \mathcal{M}(B) = \mathbb{C} \cdot 1$, i.e. $A \subseteq B$ is **irreducible**, and *B* is simple
- **③** there is a **unique faithful conditional expectation** $E: B \rightarrow A$
- **(**) $A \subseteq B$ is a **noncommutative Cartan subalgebra** in the sense of Exel
- B ≃ C^{*}_r(B) for an outer Fell bundle B = (B_g)_{g∈G} over a discrete group G with the unit fiber B₁ = A
 (B and G are uniquely determined by A ⊆ B)
- A ⊆ B is an aperiodic inclusion and the necessarily unic pseudo-expectation is faithful
- $A \subseteq B$ supports all intermediate C^{*}-algebras

Conjecture: If the above holds, then

every intermediate C*-subalgebra $A \subseteq C \subseteq B$ is of the form $C = C_r^*((B_h)_{h \in H})$ for a subgroup $1 \subseteq H \subseteq G$