Universal Toeplitz algebras and their boundary quotients

M. Laca University of Victoria

Noncommutative Analysis at the Technion In honor of Paul S. Muhly June 26 - July 1, 2022

joint work with C. F. Sehnem

P = submonoid of a group G $(e \in P \subset G, PP \subset P)$

Left regular representation $p \mapsto L_p$ of P by isometries on $\ell^2(P)$:

 $L_p\delta_q = \delta_{pq} \qquad p \in P,$

defined first on $\{\delta_q : q \in P\}$, then extended by linearity and continuity.

The (reduced) Toeplitz C*-algebra is the C*-algebra generated by L

 $\mathcal{T}_{\lambda}(P) := C^*(L_p : p \in P).$

Since $\mathcal{T}_{\lambda}(P) \subset \mathcal{B}(\ell^2(P))$ one can use spatial techniques, but estimating norms of operators is not easy.

Given a collection $\{V_p\}_{p\in P}$, the question of whether whether $L_p \mapsto V_p$ produces a representation of $\mathcal{T}_{\lambda}(P)$ is a hard question:

$$\|f(V_p, V_p^* \mid p \in F)\| \stackrel{!}{\leqslant} \|f(L_p, L_p^* \mid p \in F)\|$$

three classical theorems

- (Coburn '67) S = unilateral shift and V = an isometry. Then the map $S^n \mapsto V^n$ $(n \in \mathbb{N})$ extends to a homomorphism $\pi_V : C^*(S) \to C^*(V)$, ... isomorphism iff $V V^* \neq 1$.
- (Douglas '72) Let Γ be a subgroup of \mathbb{R} . Suppose L is the l.r.r. and V is any isometric representation of $\Gamma^+ := \Gamma \cap [0, \infty)$. Then the map $L_p \mapsto V_p$ extends to a homomorphism $\pi_V : \mathcal{T}_{\lambda}(\Gamma^+) \longrightarrow C^*(V)$, ... isomorphism iff $V_p V_p^* \neq 1$ (for some, and hence all, $p \neq 0$).

- (Cuntz '81) Suppose *L* is the l.r.r. and *V* is an isometric representation of $P = \mathbb{F}_n^+$, the free monoid on *n* generators $\{1, 2, \dots, n\}$, and assume $\sum_{j=1}^n V_j V_j^* \leq 1$. Then the map $L_p \mapsto V_p$ extends to a homomorphism $\pi_V : \mathcal{T}_\lambda(\mathbb{F}_n^+) \longrightarrow C^*(V)$, ... isomorphism iff $\prod_{j=1}^n (1 - V_j V_j^*) \neq 0$.

presentations for $\mathcal{T}_{\lambda}(\mathbb{N})$, $\mathcal{T}_{\lambda}(\Gamma^{+})$, and $\mathcal{T}_{\lambda}(\mathbb{F}_{n}^{+})$

- Semigroup Presentation Properness - $P = \mathbb{N};$ $v^*v = 1,$ $1 - VV^* \neq 0$ - $P = \Gamma^+;$ $v^*_{\gamma}v_{\gamma} = 1,$ $v_{\gamma}v_{\delta} = v_{\gamma+\delta}$ $1 - V_pV^*_p \neq 0$ - $P = \mathbb{F}^+_n;$ $v^*_iv_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i = j \end{cases}$ $\prod_{j=1}^n (1 - V_jV^*_j) \neq 0$

Remarks:

- 1. universality of $\mathcal{T}_{\lambda}(P)$ (surprising for \mathbb{F}_n^+ because \mathbb{F}_n is nonamenable)
- 2. uniqueness of $\mathcal{T}_{\lambda}(P)$ for 'jointly proper' representations
- 3. boundary quotient $\partial \mathcal{T}_{\lambda}(P)$ for 'maximally improper' representations

Constructible right ideals [Xin Li, 2012] Definition/motivation by example: Let's compute $L_p^*L_qL_r^*L_s$ for $p, q, r, s \in P$ with $p^{-1}qr^{-1}s = e$

$$(L_p^* L_q L_r^* L_s) \delta_x = L_p^* L_q L_r^* \delta_{sx} = \begin{cases} L_p^* L_q \delta_{r^{-1} sx} & \text{if } sx \in rP(\Leftrightarrow x \in s^{-1} rP) \\ 0 & \text{otherwise.} \end{cases}$$

Assuming $x \in s^{-1}rP$, we continue...

$$L_{p}^{*}L_{q}\delta_{r^{-1}sx} = \begin{cases} \delta_{p^{-1}qr^{-1}sx} & \text{if } x \in s^{-1}rq^{-1}pP \\ 0 & \text{otherwise.} \end{cases}$$

So $L_p^*L_qL_r^*L_s\delta_x = \begin{cases} \delta_{(p^{-1}qr^{-1}s)x} & \text{if } x \in P \cap s^{-1}rP \cap s^{-1}rq^{-1}pP, \\ 0 & \text{otherwise.} \end{cases}$

 $K(p,q,r,s) := P \cap s^{-1}rP \cap s^{-1}rq^{-1}pP$ is a constructible right ideal.

Since $p^{-1}qr^{-1}s = e$, i.e., $\alpha = (p, q, r, s)$ is *neutral*, then

 $L_p^* L_q L_r^* L_s = \mathbb{1}_{K(p,q,r,s)}$

Constructible right ideals: formal definition

Let \mathcal{W} denote the set of all words in P of even length. For each $k \in \mathbb{N}$ and each word

$$\alpha = (p_1, p_2, \dots, p_{2k}) \in \mathcal{W}(P)$$

we set

$$\begin{split} \dot{\alpha} &:= p_1^{-1} p_2 \cdots p_{2k-1}^{-1} p_{2k}, \qquad \tilde{\alpha} &:= (p_{2k}, p_{2k-1}, \dots p_2, p_1) \quad \text{and} \\ \mathcal{K}(\alpha) &:= P \cap (p_{2k}^{-1} p_{2k-1}) P \cap (p_{2k}^{-1} p_{2k-1} p_{2k-2}^{-1} p_{2k-3}) P \cap \dots \cap (\dot{\tilde{\alpha}}) P, \\ \text{is a constructible right ideal.} \end{split}$$

Notice that $\dot{\tilde{\alpha}} := p_{2k}^{-1} p_{2k-1} \cdots p_2^{-1} p_1.$

 $\mathcal{J}_{P} = \{K(\alpha) : \alpha \in \mathcal{W}, \dot{\alpha} = e\}$ is a semi-lattice under intersection.

universal Toeplitz C*-algebra $\mathcal{T}_u(P)$

Definition [L-Schnem '21] Let $\mathcal{T}_u(P)$ be the universal C*-algebra with generators $\{t_p : p \in P\}$ such that (writing $\dot{t}_{\alpha} := t_{p_1}^* t_{p_2} \cdots t_{p_{2k-1}}^* t_{p_{2k}})$

(T1) $t_e = 1;$

(T2) $\dot{t}_{\alpha} = 0$ if $K(\alpha) = \emptyset$ with $\dot{\alpha} = e$;

(T3) $\dot{t}_{\alpha} - \dot{t}_{\beta} = 0$ if $K(\alpha) = K(\beta)$ for α and β such that $\dot{\alpha} = e = \dot{\beta}$;

(T4) $\prod_{\beta \in F} (\dot{t}_{\alpha} - \dot{t}_{\beta}) = 0$ if $K(\alpha) = \bigcup_{\beta \in F} K(\beta)$ for some α and finite set F with $\dot{\alpha} = e = \dot{\beta}$.

Definition: Universal Toeplitz and its diagonal:

 $\mathcal{T}_{u}(P) := C^{*}(\{t_{p} : p \in P\}) = \overline{\operatorname{span}}\{\dot{t}_{\alpha} : \alpha \in \mathcal{W}\}$

 $D_{u} := C^{*}(\{\dot{t}_{\alpha}\dot{t}_{\alpha}^{*}: \alpha \in \mathcal{W}\}) = \overline{\operatorname{span}}\{\dot{t}_{\alpha}: \alpha \in \mathcal{W}, \ \dot{\alpha} = e\}$

Remark : Jack Spielberg has associated a couple of C*-algebras to each small category; one of them is isomorphic to $\mathcal{T}_u(P)$ under a somewhat different guise. Also cf. X. Li's booleanization of \mathcal{J}_P , C.F. Sehnem's product system construction.

some consequences

Relations (T1)–(T3) give Xin Li's semigroup C*-alg $C_s^*(P)$: $\{t_p: p \in P\}$ is a semigroup of isometries generating $\mathcal{T}_u(P)$; $\{\dot{t}_\alpha: \dot{\alpha} = e\}$ is a commuting family of projections generating D_u . Moreover,

 $\frac{\overline{C}^*_s(P) \xrightarrow{\pi} \mathcal{T}_u(P) \xrightarrow{\pi_L} \mathcal{T}_\lambda(P)}{D_s \xrightarrow{\pi|_D} D_u \xrightarrow{\cong} D_\lambda}$

 π_L is an isomorphism iff $E_u : \mathcal{T}_u(P) \to D_u$ is faithful (weak containment), e.g. if $P \hookrightarrow G$ amenable.

 π and $\pi|_D$ are isomorphisms iff P satisfies independence.

independence: what it is and how it can fail

P satisfies independence iff any one of the following holds:

-
$$K(\alpha) = \bigcup_{\beta \in F} K(\beta) \implies K(\beta) = K(\alpha)$$
 for some $\beta \in F$.

- $\{\mathbb{1}_{\mathcal{K}(\alpha)} : \mathcal{K}(\alpha) \in \mathcal{J}\}$ is linearly independent.
- (T4) never applies beyond (T3).
- $C^*_s(P) \xrightarrow{\pi} \mathcal{T}_u(P)$ is an isomorphism
- $D_s \xrightarrow{\pi|_D} D_u$ is an isomorphism

Failures of independence:

Example 1 (Li '17) Independence fails on $\Sigma = \{0, 2, 3, \ldots\} \subset \mathbb{Z}$. because

 $K(3,2,2,3) = 2 + \mathbb{N}$ can be written as $(2 + \Sigma) \cup (3 + \Sigma)$.

So $D_s(\Sigma) \ncong D_\lambda(\Sigma)$ and $C_s^*(\Sigma) \ncong T_\lambda(\Sigma)$.

Example 2 (L-Sehnem '21) Independence fails for all multiplicative monoids and all ax + b monoids of nonmaximal orders O in number fields.

a partial action $G \ \bigcirc \ D_{\lambda}$

[Li '17]: There is a partial action γ of G on D_{λ} such that if $p \in P$,

$$\gamma_{p}(\mathbb{1}_{K(\alpha)}) = \gamma_{p}(\dot{L}_{\alpha}) = \dot{L}_{(e,p,\alpha,p,e)} = L_{p}\dot{L}_{\alpha}L_{p}^{*} = \mathbb{1}_{pK(\alpha)}$$

and $\mathcal{T}_{\lambda}(P) \cong D_{\lambda} \rtimes_{\gamma,r} G$

 $[\text{L-Sehnem '21}]: \qquad \mathcal{T}_u(P) \cong D_u \rtimes_{\gamma} G.$

This gives

$$D_{u} \rtimes_{u} G \cong \mathcal{T}_{u}(P) \xrightarrow{\pi_{L}} \mathcal{T}_{\lambda}(P) \cong D_{\lambda} \rtimes_{r} G$$

faithful representations of $\mathcal{T}_{\lambda}(P)$

Define $P^* := P \cap P^{-1}$ (the group of invertibles in P).

Theorem [Li '17]: When $P^* = \{e\}$, π is faithful iff $\pi|_{D_{\lambda}}$ is faithful.

When $P^* \neq \{e\}$ we should not expect this to be true (take P = G).

The partial action $G \subset D_{\lambda}$ restricts to an action $P^* \subset D_{\lambda}$ and

 $D_{\lambda} \rtimes_{\gamma,r} P^* \hookrightarrow D_{\lambda} \rtimes_{\gamma,r} G \cong \mathcal{T}_{\lambda}(P)$

Theorem [L-Sehnem '21]: Every nontrivial ideal of $\mathcal{T}_{\lambda}(P)$ has nontrivial intersection with the subalgebra $D_{\lambda} \rtimes_{\gamma,r} P^*$.

Equivalently:

 $\pi: \mathcal{T}_{\lambda}(P) \to \mathcal{B}(\mathcal{H})$ is faithful iff it is faithful on $D_{\lambda} \rtimes_{\gamma, r} P^*$.

topological freeness and jointly proper isometries

When $P^* \subset D_{\lambda}$ is topologically free, the ideal intersection property drops down to D_{λ} . The key is a result of Archbold-Spielberg.

Definition: P satisfies (TopFree) if for every $u \in P^* \setminus \{e\}$ and every $C \subset_{\text{fin}} \mathcal{J} \setminus \{P\}$, there exists $q \in P \setminus \bigcup_{R \in C} R$ such that $uqP \neq qP$. Definition: $\{W_p : p \in P\}$ is *jointly proper* if $\prod_{\alpha \in F} (I - \dot{W}_{\alpha}) \neq 0$ for every finite collection F of neutral words with $K(\alpha) \neq P$.

Theorem [L-Sehnem '21]: Suppose $E_u : \mathcal{T}_u(P) \to D_u$ is faithful, $P \hookrightarrow G$ satisfies (TopFree), and $\{W_p : p \in P\}$ satisfies (T1)–(T4). Then $L_p \mapsto W_p$ extends to a homomorphism

 $\mathcal{T}_{\lambda}(P) \xrightarrow{\pi_{W}} C^{*}(W),$

which is an isomorphism if and only if W is jointly proper.

boundary quotient and covariance algebra

Let $\Omega_P := \operatorname{Spec} D_{\lambda}$.

Theorem [Li '17] (cf. L- Crisp '07) Ω_P has a smallest nonempty closed *G*-invariant subset $\partial \Omega_P$, and the (reduced) boundary is

 $\partial \mathcal{T}_{\lambda}(P) \cong C(\partial \Omega_P) \rtimes_r G$

By analogy, there is a full boundary, given by

 $\partial \mathcal{T}_u(P) \cong C(\partial \Omega_P) \rtimes_u G$

A presentation of the full boundary quotient can be obtained by adding more relations to the presentation of $\mathcal{T}_u(P)$. The idea comes from Sehnem's covariance algebra for product systems, for the canonical product system with one-dimensional fibres associated to the monoid P.

foundation sets

Definition: A foundation set for the constructible right ideal $K(\alpha)$ is a finite collection $\{K(\beta) : \beta \in F\} \subset \mathcal{J}$ such that $K(\alpha) \supset \bigcup_{\beta \in F} K(\beta)$ and $pP \cap \bigcup_F K(\beta) \neq \emptyset$ for all $p \in K(\alpha)$. The foundation set $\{K(\beta) : \beta \in F\}$ is proper if $K(\alpha) \supset \bigcup_{\beta \in F} K(\beta)$.

Schnem's strong covariance ideal leads to boundary relations (T5) $\prod_{\beta \in F} (\dot{w}_{\alpha} - \dot{w}_{\beta}) = 0$ for foundation sets (which we may assume are proper because 'improper ones' are covered by (T4)). Recall:

(T4) $\prod_{\beta \in F} (\dot{t}_{\alpha} - \dot{t}_{\beta}) = 0$ if $K(\alpha) = \bigcup_{\beta \in F} K(\beta)$ for α and $F \subseteq P$

(T3) $\dot{t}_{\alpha} - \dot{t}_{\beta} = 0$ if $K(\alpha) = K(\beta)$ for α and β .

"there is no (T6)"

Lemma [L-Sehnem '21]: (T1)–(T5) is a maximal set of relations, i.e. the quotient of $\mathcal{T}_u(P)$ by any extra relation 'of the same kind' is trivial. Proof: If $K(\alpha) \supset \bigcup_{\beta \in F} K(\beta)$ is not a foundation set, then $pP \cap \bigcup_{\beta \in F} K(\beta) = \emptyset$ for some $p \in K(\alpha)$, so $t_p t_p^* \leq \prod_{\beta \in F} (\dot{t}_\alpha - \dot{t}_\beta)$. If the product vanishes, then so does the isometry t_p .

The full (universal) boundary quotient $\partial T_u(P)$ is defined by:

Theorem [L-Sehnem '21] The following are canonically isomorphic:

- 1. the covar. alg. $\mathbb{C} \rtimes_{\mathbb{C}^P} P$ of the 1-dim'l product system over P;
- 2. the universal C*-algebra with presentation (T1)-(T5);
- 3. the full partial crossed product $C(\partial \Omega_P) \rtimes_u G$.

purely infinite simple reduced boundary quotients

Theorem [L-Sehnem '21]: TFAE

1. The monoid *P* satisfies condition (PI): $\forall p \neq q \text{ in } P \quad \exists s \in P \text{ such that } psP \cap qsP = \emptyset.$

2. every proper ideal of $\partial T_u(P)$ is contained in the kernel of the canonical map

 $\partial \mathcal{T}_{u}(P) \to \partial \mathcal{T}_{\lambda}(P) = C(\partial \Omega_{P}) \rtimes_{r} G;$

3. the partial action $G \subset \partial \Omega_P$ is topologically free;

Corollary [L-Sehnem '21]: Assume $P \neq \{e\}$.

If condition (PI) above holds, then $\partial \mathcal{T}_{\lambda}(P)$ is purely infinite simple. The converse holds whenever the boundary action satisfies weak containment (i.e. $\partial \mathcal{T}_{u}(P) \cong \partial \mathcal{T}_{\lambda}(P)$ via the canonical map).

pure infiniteness from b + ax monoids of integral domains

Let *R* be an integral domain that is *not* a field and let $R \rtimes R^{\times}$ be the associated b + ax monoid. So the multiplication is

 $(b,a)(d,c) = (b+ad,ac), \qquad b,d \in R, a,c \in R^{\times}.$

From [Cuntz '08] and [Li '10] we know $\partial T_{\lambda}(R \rtimes R^{\times})$ is purely infinite simple (ring C*-algebras).

We recover this verifying directly that $P = R \times R^{\times}$ satisfies (PI): $\forall p \neq q$ in $P \exists s \in P$ such that $psP \cap qsP = \emptyset$ Let p = (b, a) and q = (d, c) with $p \neq q$. We can reduce to $b \neq d$. **Case 1:** $b - d \notin acR$. Set s := (0, ac). Then $psP \cap qsP = \emptyset$ because, otherwise, $b - d \in acR$, contradicting the assumption.

Case 2: $b - d \in acR^{\times}$. Let $\bar{x} \in R^{\times}$ with $b - d = ac\bar{x}$. Let $r \in R^{\times}$ non-invertible and set $s := (0, ac\bar{x}r)$. Then $psP \cap qsP = \emptyset$ because, otherwise, r would be invertible, contradicting the assumption.

Definition: Let K be a number field of degree d and let \mathcal{O}_K be the ring of integers of K (it is a \mathbb{Z} -module of rank d). An *order* in K is a subring $\mathcal{O} \subset \mathcal{O}_K$ that is free of full rank as a \mathbb{Z} -module.

[Li-Norling '16] showed that independence fails for $\mathcal{O} = \mathbb{Z}[\sqrt{-3}]$ which is a proper subring of the ring of integers of $\mathbb{Q}[\sqrt{-3}]$.

Proposition [L-Sehnem '21]: The monoids \mathcal{O}^{\times} and $\mathcal{O} \rtimes \mathcal{O}^{\times}$ do not satisfy independence for every nonmaximal order \mathcal{O} in a number field.

Theorem [L-Sehnem '21]: For every order in a number field, $\mathcal{T}_{\lambda}(\mathcal{O} \rtimes \mathcal{O}^{\times})$ is universal and unique for jointly proper isometric representations satisfying (T1)-(T4).

Proof: The monoid $\mathcal{O} \rtimes \mathcal{O}^{\times}$ satisfies condition (TopFree).

Thank you!

