Cartan subalgebras of twisted groupoid C*-algebras including higher rank graph C*-algebras

Rachael Norton

Fitchburg State University

Noncommutative Analysis at the Technion in honor of Paul Muhly June 29, 2022

The big picture

Outline

- 1. Introduction to Cartan subalgebras of C^* -algebras
- 2. Theorem 1: Cartan subalgebras generated by subgroupoids
 - ► Joint work with Duwenig, Gillaspy, Reznikoff, and Wright
 - https://arxiv.org/pdf/2001.08270.pdf
- 3. Theorem 2: Weyl construction for our Cartan pairs
 - Joint work with Duwenig and Gillaspy
 - https://arxiv.org/pdf/2010.04137.pdf
- 4. Application of Theorem 1 to higher rank graph C^* -algebras
 - Joint work with Reznikoff and Wright

C^* -algebra

Definition (Gelfand-Naimark Theorem)

A C^* -algebra A is a norm-closed *-subalgebra of the algebra of bounded linear operators B(H) for some Hilbert space H.

Examples

- ► $M_n(\mathbb{C})$
- $C_0(X)$, where X is a locally compact Hausdorff space

Cartan subalgebra of a C^* -algebra

Definition

Let A be a C^* -algebra. We say $B \subseteq A$ is a **Cartan subalgebra** if

- 1. B is a maximal abelian subalgebra of A (MASA).
- 2. There exists a faithful conditional expectation $\Phi: A \rightarrow B$
 - Φ is contractive and linear

$$\blacktriangleright \ \Phi|_B = \mathsf{id}_B$$

$$\blacktriangleright \quad \Phi(a^*a) = 0 \implies a = 0$$

3. The normalizer of B,

$$N(B) := \{ n \in A \mid nbn^*, n^*bn \in B \quad \forall b \in B \}$$

generates A as a C^* -algebra.

4. B contains an approximate identity for A.

Cartan subalgebra of a C^* -algebra

Example

Let $A := M_n(\mathbb{C})$. The collection *B* of diagonal matrices is Cartan.

- 1. maximal abelian subalgebra
- 2. $\Phi: M_n(\mathbb{C}) \to B, \ \Phi([x_{ij}]) = [\delta_{i=j}x_{ij}]$
- 3. $E_{ij} \in N(B)$ for all i, j, so N(B) generates A.
- 4. B contains the identity matrix.

Remarks about Cartan subalgebras

- Cartan subalgebras of von Neumann algebras were originally defined by Vershik in 1971 (then by Feldman and Moore in 1977).
- Cartan subalgebras of C*-algebras were defined by Renault in 1980.
- The Cartan subalgebra B is generally much simpler than A but can reveal information about A.
 - For a specific Cartan subalgebra B, if a representation of A is injective on B, then it is injective on A (Brown-Nagy-Reznikoff-Sims-Williams 2016).
 - For certain C*-algebras, the presence of a Cartan subalgebra is equivalent to satisfying the Universal Coefficient Theorem, which implies that A can be classified by its Elliott invariant (Li 2019).

We are interested in the existence of Cartan subalgebras in a specific type of C^* -algebra, one that is built from a groupoid and a cocycle.

Ingredients for $C_r^*(\mathcal{G}, c)$

Intuitively, a $\textbf{groupoid}~\mathcal{G}$ is a generalization of a group in which

- every element has an inverse
- ▶ multiplication is only defined on a subset $\mathcal{G}^{(2)}$ of $\mathcal{G} \times \mathcal{G}$

There are two "identity" elements associated with each $\gamma \in \mathcal{G}$, the source $\gamma^{-1}\gamma$ and the range $\gamma\gamma^{-1}$. The set of all identity elements is called the **unit space**, $\mathcal{G}^{(0)} = \{\gamma\gamma^{-1} \mid \gamma \in \mathcal{G}\}$. The **isotropy** subgroupoid $Iso(\mathcal{G}) = \{\gamma \in \mathcal{G} \mid \gamma^{-1}\gamma = \gamma\gamma^{-1}\}$.

In this talk, we will assume all groupoids are equipped with a locally compact Hausdorff topology, étale, and second countable.

Groupoid

Examples

groups

- ordered pairs on a set
- equivalence relations: $(x, y) \in \mathcal{G} \iff x \sim y \in R$
- given any directed graph, we can construct the free groupoid generated by the edges

Ingredients for $C_r^*(\mathcal{G}, c)$ continued

A **cocycle** is a function $c: \mathcal{G}^{(2)} \to \mathbb{T}$ that satisfies the condition

$$c(\alpha, \beta\gamma)c(\beta, \gamma) = c(\alpha\beta, \gamma)c(\alpha, \beta).$$

In this talk, all cocycles are continuous.

Given a groupoid \mathcal{G} and a cocycle c on \mathcal{G} , we denote by $C_c(\mathcal{G}, c)$ the collection of continuous compactly supported functions from \mathcal{G} to \mathbb{C} equipped with a convolution and an involution:

•
$$f * g(\gamma) := \sum_{\alpha \beta = \gamma} f(\alpha) g(\beta) c(\alpha, \beta)$$

$$\blacktriangleright f^*(\gamma) := \overline{f(\gamma^{-1})c(\gamma,\gamma^{-1})}.$$

The reduced twisted groupoid C^* -algebra $C^*_r(\mathcal{G}, c)$ is the completion of $C_c(\mathcal{G}, c)$ with respect to a certain norm.

Motivating Example

- ▶ group(oid) (Z², +)
- cocycle $c_{\theta} : \mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{T}$, $c_{\theta}((m, n), (p, q)) = e^{2\pi i n p \theta}$, where $\theta \in [0, 1)$ is irrational
- $C_r^*(\mathbb{Z}^2, c_{\theta})$ is called the irrational rotation algebra
- $C^*_r(\mathbb{Z} \times \{0\}, c_{\theta})$ is a Cartan subalgebra of $C^*_r(\mathbb{Z}^2, c_{\theta})$

Question: What are sufficient conditions on a subgroupoid S of G so that $C_r^*(S, c)$ is a Cartan subalgebra of $C_r^*(G, c)$?

A first attempt

Question: What are sufficient conditions on a subgroupoid S of G so that $B := C_r^*(S, c)$ is a Cartan subalgebra of $A := C_r^*(G, c)$?

- Recall: $B \subseteq A$ is **Cartan** if
 - 1. B is a MASA
 - 1.1 subalgebra
 - 1.2 abelian
 - 1.3 maximal abelian
 - 2. \exists faithful conditional expectaction $\Phi: A \rightarrow B$
 - 3. normalizer of B generates A
 - 4. B contains an approximate identity for A

A necessary assumption

Definition

We say S is **immediately centralizing** if whenever $\gamma \in Iso(G)$ commutes with uniformly bounded powers of every element of S, then γ commutes with every element of S.

Examples

- 1. If $Iso(\mathcal{G})$ is abelian, then \mathcal{S} is immediately centralizing.
- 2. If ${\mathcal S}$ has the unique root property, i.e.,

$$\alpha^k = \beta^k \implies \alpha = \beta$$

then ${\mathcal S}$ is immediately centralizing.

Theorem 1 (Duwenig-Gillaspy-N.-Reznikoff-Wright 2020)

Let \mathcal{G} be a second countable, locally compact Hausdorff, étale groupoid, and let c be a continuous cocycle on \mathcal{G} . Suppose \mathcal{S} is maximal among abelian subgroupoids of $Iso(\mathcal{G})$ on which c is symmetric. If \mathcal{S} is open, closed, normal, and immediately centralizing, then $C_r^*(\mathcal{S}, c)$ is a Cartan subalgebra of $C_r^*(\mathcal{G}, c)$.

Answer to a similar question

Theorem 1 (Duwenig-Gillaspy-N.-Reznikoff-Wright 2020)

Let \mathcal{G} be a second countable, locally compact Hausdorff, étale groupoid, and let c be a continuous cocycle on \mathcal{G} . Suppose \mathcal{S} is maximal among abelian subgroupoids of $Iso(\mathcal{G})$ on which c is symmetric. If \mathcal{S} is open, closed, normal, and immediately centralizing, then $C_r^*(\mathcal{S}, c)$ is a Cartan subalgebra of $C_r^*(\mathcal{G}, c)$.

Theorem (Brown-Nagy-Reznikoff-Sims-Williams 2016)

Let \mathcal{G} be a locally compact Hasudorff étale groupoid. If $lso(\mathcal{G})^{\circ}$ is abelian and closed, then $C_r^*(lso(\mathcal{G})^{\circ})$ is Cartan in $C_r^*(\mathcal{G})$.

Theorem 1 in action

Consider $\mathcal{G} = \mathbb{Z}^5$ with multiplication

$$(a_1, a_2, a_3, a_4, a_5) * (b_1, b_2, b_3, b_4, b_5) = (a_1 + b_1 + 2a_5b_3, a_2 + b_2 + 2a_5b_4, a_3 + b_3, a_4 + b_4, a_5 + b_5)$$

and cocycle

$${f c}((a_1,a_2,a_3,a_4,a_5),(b_1,b_2,b_3,b_4,b_5))=(-1)^{a_4b_1}$$

Note:

Iso
$$(\mathcal{G}) = \mathcal{G}$$
 because \mathcal{G} is a group.

 G has the unique root property, so any subgroup is immediately centralizing.

We must find maximal abelian subgroups on which c is symmetric, then check that they are open, closed, and normal.

Maximal abelian subgroups on which **c** is symmetric:

 $\begin{array}{l} \mathcal{S}_0 = \mathbb{Z} \times \mathbb{Z} \times \{0\} \times \{0\} \times \mathbb{Z} \\ \mathcal{S}_1 = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times 2\mathbb{Z} \times \{0\} \\ \mathcal{S}_2 = 2\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \{0\} \end{array}$

They are all open, closed, and normal, so Theorem 1 implies $C_r^*(S_i)$ is Cartan in $C_r^*(\mathcal{G}, \mathbf{c})$.

There's more

In Theorem 1, we have $C_r^*(\mathcal{S}, c)$ is Cartan in $C_r^*(\mathcal{G}, c)$.

Theorem (Renault 2008)

Suppose A is a C*-algebra and $B \subseteq A$ is Cartan. There exists a topologically principal étale groupoid W and a twist Σ over W such that

$$A\cong C^*_r(\mathcal{W},\Sigma)$$
 and $B\cong C_0(\mathcal{W}^{(0)}).$

Note:

- ► Topologically principal means { u ∈ W⁽⁰⁾ | W^u_u = {u} } is dense in W⁽⁰⁾. Nontrivial groups are not top. principal.
- A twist is a central groupoid extension W⁽⁰⁾ × T → Σ → W. All cocycles induce a twist, but not all twists arise from a cocycle.
- W is called the Weyl groupoid and Σ is called the Weyl twist of the Cartan pair (A, B).

Back to the big picture

Question: Can \mathcal{W} and Σ be described in terms of \mathcal{S}, \mathcal{G} , and c?

Our Weyl groupoid and Weyl twist

Suppose \mathcal{S}, \mathcal{G} , and c are as in Theorem 1, so $C_r^*(\mathcal{S}, c)$ is a Cartan subalgebra of $C_r^*(\mathcal{G}, c)$. Let $\widehat{\mathcal{S}}$ denote the Gelfand dual of $C_r^*(\mathcal{S}, c)$, i.e. $C_r^*(\mathcal{S}, c) \cong C_0(\widehat{\mathcal{S}})$.

Theorem 2 (Duwenig-Gillaspy-N. 2021)

If there exists a continuous section of the quotient map $\mathcal{G}\to \mathcal{G}/\mathcal{S},$ then

$$C_r^*(\mathcal{G},c) \cong C_r^*(\mathcal{G}/\mathcal{S} \ltimes \widehat{\mathcal{S}},\sigma),$$

where σ is an explicitly defined continuous cocycle on $\mathcal{G}/\mathcal{S} \ltimes \widehat{\mathcal{S}}$.

Answer to a similar question

Theorem 2 (Duwenig-Gillaspy-N. 2021)

If there exists a continuous section of the quotient map $\mathcal{G}\to \mathcal{G}/\mathcal{S},$ then

$$C_r^*(\mathcal{G}, c) \cong C_r^*(\mathcal{G}/\mathcal{S} \ltimes \widehat{\mathcal{S}}, \sigma),$$

where σ is an explicitly defined continuous cocycle on $\mathcal{G}/\mathcal{S} \ltimes \widehat{\mathcal{S}}$.

Theorem (lonescu-Kumjian-Renault-Sims-Williams 2021) Let \mathcal{G} be a second countable, locally compact Hausdorff (not necessarily étale) groupoid with a Haar system, and let \mathcal{S} be a closed normal bundle of abelian groups with a Haar system. If \mathcal{G}/\mathcal{S} is étale and topologically principal, then $C_r^*(\mathcal{S})$ is a Cartan subalgebra of $C_r^*(\mathcal{G})$ and

$$C_r^*(\mathcal{G}) \cong C_r^*(\widehat{\mathcal{S}} \rtimes \mathcal{G}/\mathcal{S}, \Sigma),$$

where Σ is a twist over $\widehat{\mathcal{S}} \rtimes \mathcal{G}/\mathcal{S}$.

Theorem 2 in action

Recall: $(\mathbb{Z}^5, *, \mathbf{c})$

Theorem 1: $C_r^*(S_i)$ is Cartan in $C_r^*(\mathcal{G}, c)$ for $S_0 = \mathbb{Z} \times \mathbb{Z} \times \{0\} \times \{0\} \times \mathbb{Z}$ $S_1 = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \{0\}$ $S_2 = 2\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \{0\}$

Theorem 2: The Weyl groupoids are $\mathcal{W}_0 \cong \mathbb{Z}^2 \ltimes \mathbb{T}^3$ $\mathcal{W}_1 \cong (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}) \ltimes \mathbb{T}^4$ $\mathcal{W}_2 \cong (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}) \ltimes \mathbb{T}^4$ and $C_r^*(\mathcal{S}_0) \cong C(\mathbb{T}^3) \ncong C(\mathbb{T}^4) \cong C_r^*(\mathcal{S}_1) \cong C_r^*(\mathcal{S}_2).$

A detour into higher rank graphs

Definition

A higher rank graph (or k-graph) is a countable small category Λ equipped with a degree functor $d : \Lambda \to \mathbb{N}^k$ satisfying the factorization property: for all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ such that $d(\lambda) = m + n$, there exist unique $\mu, \nu \in \Lambda$ such that $d(\mu) = m$, $d(\nu) = n$, and $\lambda = \mu\nu$.

Example of a 2-graph:

More about 2-graphs

Let Λ be a row-finite 2-graph with no sources and c_{Λ} be a cubical cocycle on Λ .

Let Λ^{∞} denote the **infinite path space** of Λ .

Given Λ and c_{Λ} , we can construct

a groupoid

$$\mathcal{G}_{\Lambda} := \{(x, l-m, y) \mid x, y \in \Lambda^{\infty}, l, m \in \mathbb{N}^{2}, \sigma^{l}(x) = \sigma^{m}(y)\}$$

▶ multiplication: (x, p, y)(y, q, z) = (x, p + q, z)
▶ inverse: (x, p, y)⁻¹ = (y, -p, x)

 a continuous cocycle c on G_Λ [Kumjian-Pask-Sims 2015, Lemma 6.3]. Application of Theorem 1 to higher rank graphs

Question: What exactly do the subgroupoids $\mathcal{S}\subseteq \mathcal{G}_\Lambda$ look like that satisfy Theorem 1?

Recall: $\mathcal{S} \subseteq \mathcal{G}_{\Lambda}$ satisfies Theorem 1 if

 S is maximal among abelian subgroupoids of lso(G_Λ) on which c is symmetric.

- \blacktriangleright *S* is open and closed.
- S is normal.
- ► S is immediately centralizing.

Theorem 1 for k-graphs

For $x \in \Lambda^{\infty}$, let

$$[x] := \{y \in \Lambda^{\infty} \mid \sigma'(y) = \sigma^m(x) \text{ for some } I, m \in \mathbb{N}^2\}.$$

Theorem 1 for k-graphs (N.-Reznikoff-Wright)

Let Λ be a row-finite 2-graph with no sources and c_{Λ} be a categorical cocycle on Λ . Let c be the continuous cocycle on \mathcal{G}_{Λ} constructed from c_{Λ} according to [KPS 2015, Lemma 6.3]. For each [x], fix $r_x \in \mathbb{Q} \cup \{\infty\}$. Define

$$\mathcal{S} := \bigcup_{[x]} \bigcup_{y \in [x]} \{ (y, (m_1, m_2), y) \in \mathcal{G}_{\Lambda} \mid \frac{m_1}{m_2} = r_x \}.$$

If S is open and closed, then $C_r^*(S, c)$ is a Cartan subalgebra of $C_r^*(\mathcal{G}_{\Lambda}, c)$.

References

- Brown, Nagy, Reznikoff, Sims, and Williams, Cartan subalgebras in C*-algebras of Hausdorff étale groupoids, Integral Equ. Oper. Theory 85:1 (2016), 109-126.
- Duwenig, Gillaspy, Norton, Reznikoff, and Wright, Cartan subalgebras for non-principal twisted groupoid C*-algebras, J. Funct. Anal. 279:6 (2020).
- Duwenig, Gillaspy, and Norton, Analyzing the Weyl construction for dynamical Cartan subalgebras, Int. Math. Res. Not. rnab114 (2021).
- Ionescu, Kumjian, Renault, Sims, and Williams, C*-algebras of extensions of groupoids by group bundles, J. Funct. Anal. 280 (2021).
- Kumjian, Pask, and Sims, On twisted higher-rank graph C*-algebras, Trans. Amer. Math. Soc. 367 (2015), 5177-5216.

Renault, *Cartan subalgebras in C*-algebras*, Irish Math. Soc. Bull. **61** (2008), 29-63.

Thank you!

