C*-envelopes of tensor algebras of product systems

Camila F. Sehnem

University of Waterloo

Noncommutative Analysis at the Technion in honour of Paul Muhly

June 28, 2022

Tensor algebras of correspondences

Let A be a C^* -algebra. A *correspondence* $\mathcal{E}: A \leadsto A$ is a right Hilbert A-module with a nondegenerate *-homomorphism $\varphi: A \to \mathbb{B}(\mathcal{E})$.

The Fock space of \mathcal{E} is the Hilbert A-module $\mathcal{E}^+ := \bigoplus_{n=0}^{\infty} \mathcal{E}^{\otimes n}$.

For $\xi \in \mathcal{E}$, let $t_{\xi} \coloneqq \xi \otimes$ be the 'creation' operator on \mathcal{E}^+ .

Let $t_{\infty} \colon \mathcal{E} \to \mathbb{B}(\mathcal{E}^+)$, $\xi \mapsto t_{\xi}$ and let $\varphi_{\infty} \colon A \to \mathbb{B}(\mathcal{E}^+)$ be the diagonal left action.

The Toeplitz C*-algebra $\mathcal{T}_{\mathcal{E}}$ of \mathcal{E} is the C*-algebra generated by $\varphi_{\infty}(A) + t_{\infty}(\mathcal{E})$. The tensor algebra $\mathcal{T}^+(\mathcal{E})$ of \mathcal{E} is the closed subalgebra of $\mathcal{T}_{\mathcal{E}}$ generated by $\varphi_{\infty}(A) + t_{\infty}(\mathcal{E})$.

Cuntz-Pimsner algebras

The gauge action: $\mathcal{T}_{\mathcal{E}}$ carries a continuous action $\bar{\gamma}$ of \mathbb{T} such that

$$\bar{\gamma}_z(\varphi_\infty(a)) = \varphi_\infty(a)$$
 and $\bar{\gamma}_z(t_\xi) = z t_\xi$.

Thus $\mathcal{T}_{\mathcal{E}} = \overline{\bigoplus}_{n \in \mathbb{Z}} \mathcal{T}_{\mathcal{E}}^n$ with $\mathcal{T}_{\mathcal{E}}^m \cdot \mathcal{T}_{\mathcal{E}}^n \subset \mathcal{T}_{\mathcal{E}}^{m+n}$ and $(\mathcal{T}_{\mathcal{E}}^n)^* = \mathcal{T}_{\mathcal{E}}^{-n}$; there is a faithful conditional expectation $E^{\bar{\gamma}} : \mathcal{T}_{\mathcal{E}} \to \mathcal{T}_{\mathcal{E}}^0$ vanishing on $\mathcal{T}_{\mathcal{E}}^n$ for $n \neq 0$.

- The Cuntz–Pimsner algebra $\mathcal{O}_{\mathcal{E}}$ of \mathcal{E} is the quotient $\mathcal{T}_{\mathcal{E}}/\mathbb{K}(\mathcal{E}^+l_{\mathcal{E}})$, where $l_{\mathcal{E}} := \varphi^{-1}(\mathbb{K}(\mathcal{E})) \cap (\ker \varphi)^{\perp} \triangleleft A$.
- The gauge action on $\mathcal{T}_{\mathcal{E}}$ descends to a gauge action $\gamma \colon \mathbb{T} \to \mathsf{Aut}(\mathcal{O}_{\mathcal{E}})$;

An important property of $\mathcal{O}_{\mathcal{E}}$: a *-homomorphism $\hat{\pi}\colon \mathcal{O}_{\mathcal{E}}\to B$ is faithful on the fixed-point algebra $\mathcal{O}_{\mathcal{E}}^0$ for γ iff it is faithful on A.

 \diamond $\mathcal{T}_{\mathcal{E}}$ and $\mathcal{O}_{\mathcal{E}}$ can also be characterised via universal properties.

C*-envelopes

An operator algebra C on a Hilbert space \mathcal{H} is a closed subalgebra of $\mathbb{B}(\mathcal{H})$.

(Arveson, 69): Let C be an operator algebra contained in a C^* -algebra B with $C^*(C) = B$. An ideal J in B is a boundary ideal for C if the quotient map $B \to B/J$ is completely isometric on C. A boundary ideal J of B is the Shilov boundary for C if it contains every other boundary ideal for C.

A C*-cover of C is a pair (B, ρ) , where B is a C*-algebra and $\rho \colon C \to B$ is a completely isometric homomorphism such that $C^*(\rho(C)) = B$.

The C*-envelope of C is a C*-cover $(C_{env}^*(C), \iota)$ satisfying the following:

 \diamond if (B, ρ) is a C*-cover of C, then there exists a *-homomorphism $\pi \colon B \to \mathrm{C}^*_{\mathrm{env}}(C)$ such that $\pi \circ \rho = \iota$.

(Hamana, 79): the C^* -envelope of C exists and is unique up to isomorphism.

Cuntz-Pimsner algebras as C*-envelopes of tensor algebras

If $\mathcal{E} = \mathbb{C} : \mathbb{C} \leadsto \mathbb{C}$, then $\mathcal{T}(\mathbb{C})^+$ can be identified with the algebra of analytic functions on the unit disc, and thus

$$\mathrm{C}^*_{\mathrm{env}}(\mathcal{T}(\mathbb{C})^+) = \mathrm{C}(\mathbb{T}) \cong \mathcal{O}_{\mathbb{C}}.$$

Theorem (Muhly-Solel, Fowler-Muhly-Raeburn, Katsoulis-Kribs)

Let $\mathcal{E}: A \leadsto A$ be a correspondence, and let $\mathcal{T}(\mathcal{E})^+$ be the tensor algebra of \mathcal{E} . Then the C*-envelope $C^*_{env}(\mathcal{T}(\mathcal{E})^+)$ is canonically isomorphic to the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{E}}$.

Consequence: the C*-envelope $C_{env}^*(\mathcal{T}(\mathcal{E})^+)$ automatically carries a continuous action γ of $\mathbb T$ for which the quotient map $\phi_{\lambda} \colon \mathcal T_{\mathcal E} \to \mathrm{C}^*_{\mathrm{env}}(\mathcal T_{\mathcal E}^+)$ is gauge-equivariant.

Product systems

Let P be a submonoid of a group G. A product system over P of A-correspondences consists of:

- (i) a correspondence $\mathcal{E}_p: A \rightsquigarrow A$ for each $p \in P$, where $\mathcal{E}_e = A$ is the identity correspondence;
- (ii) associative correspondence isomorphisms $\mu_{p,q} \colon \mathcal{E}_p \otimes_A \mathcal{E}_q \stackrel{\cong}{\to} \mathcal{E}_{pq}$, also called multiplication maps, for all $p, q \in P$, where $\mu_{e,p}$ and $\mu_{p,e}$ implement the left and right actions of A on \mathcal{E}_p , respectively.
 - \diamond **Examples**: the canonical product system \mathbb{C}^P of one-dimensional fibres; from semigroups of endomorphisms on unital C^* -algebras etc.
 - \diamond If $\mathcal{E}_1: A \leadsto A$ is a correspondence, then setting $\mathcal{E}_n := \mathcal{E}^{\otimes n}$, we have that $\mathcal{E} = (\mathcal{E}_n)_{n \in \mathbb{N}}$ is a product system over \mathbb{N} .

The Fock representation

A representation of a product system $\mathcal{E} = (\mathcal{E}_p)_{p \in P}$ in a C*-algebra B consists of linear maps $\pi_p \colon \mathcal{E}_p \to B$, for all $p \in P \setminus \{e\}$, and a *-homomorphism $\pi_e: A \to B$, satisfying the following two axioms:

- (i) $\pi_p(\xi)\pi_q(\eta) = \pi_{pq}(\xi\eta)$ for all $p, q \in P$, $\xi \in \mathcal{E}_p$ and $\eta \in \mathcal{E}_q$;
- (ii) $\pi_p(\xi)^*\pi_p(\eta) = \pi_e(\langle \xi \mid \eta \rangle)$, for all $p \in P$ and $\xi, \eta \in \mathcal{E}_p$.

The Fock space of \mathcal{E} is $\mathcal{E}^+ := \bigoplus_{p \in P} \mathcal{E}_p$. There is a canonical injective representation $\psi = \{\psi_p\}_{p \in P}$ of $\dot{\mathcal{E}}$ in $\mathbb{B}(\mathcal{E}^+)$ called the Fock representation.

Definition

The Fock algebra $\mathcal{T}_{\lambda}(\mathcal{E})$ of \mathcal{E} is the C*-algebra generated by the range of ψ . The tensor algebra $\mathcal{T}_{\lambda}(\mathcal{E})^+$ of \mathcal{E} is the closed subalgebra of $\mathcal{T}_{\lambda}(\mathcal{E})$ generated by the range of ψ . That is,

$$\mathcal{T}_{\lambda}(\mathcal{E})^{+} = \overline{\operatorname{span}}\{\psi_{p}(\xi) \mid p \in P, \xi \in \mathcal{E}_{p}\}.$$

Strongly covariant representations

Fowler's C*-algebra $C^*_{rep}(\mathcal{E})$ is the C*-algebra generated by a universal representation $\tilde{t}=\{\tilde{t}_p\}_{p\in P}$ of \mathcal{E} . There is a coaction

$$\tilde{\delta} \colon \mathrm{C}^*_{\mathsf{rep}}(\mathcal{E}) o \mathrm{C}^*_{\mathsf{rep}}(\mathcal{E}) \otimes \mathrm{C}^*(\mathcal{G}), \quad \tilde{t}_p(\xi) \mapsto \tilde{t}_p(\xi) \otimes u_p.$$

Thus $C^*_{\text{rep}}(\mathcal{E}) = \bigoplus C^*_{\text{rep}}(\mathcal{E})_g$ is topologically G-graded. For each $F \subset G$ finite, we associate a closed submodule \mathcal{E}_F of \mathcal{E}^+ , and a *-homomorphism $t_F : C^*_{\text{rep}}(\mathcal{E})_e \to \mathbb{B}(\mathcal{E}_F)$ such that:

- \diamond If $F_1 \subset F_2$ are finite subsets of G, then $\mathcal{E}_{F_2} \subset \mathcal{E}_{F_1}$.
- $\diamond \ \, \mathsf{Setting} \, \|b\|_F \coloneqq \|t_F(b)\|, \, \mathsf{we have} \, \|b\|_{F_2} \le \|b\|_{F_1}. \, \mathsf{We define an} \\ \mathsf{ideal} \, J_e \lhd \mathrm{C}^*_{\mathsf{rep}}(\mathcal{E})_e \, \mathsf{by} \, J_e \coloneqq \left\{ b \in \mathrm{C}^*_{\mathsf{rep}}(\mathcal{E})_e \middle| \, \lim_F \|b\|_F = 0 \right\}.$

Definition (S., 19)

A representation $\pi = \{\pi_p\}_{p \in P}$ of \mathcal{E} in a C^* -algebra B is strongly covariant if the induced *-homomorphism $\tilde{\pi} : C^*_{\text{rep}}(\mathcal{E}) \to B$ vanishes on J_e .

Covariance algebra

The covariance algebra $A \times_{\mathcal{E}} P$ of \mathcal{E} is the quotient $\mathrm{C}^*_{\mathsf{rep}}(\mathcal{E})/\langle J_e \rangle$. Let $j = \{j_p\}_{p \in P}$ be induced representation of \mathcal{E} in $A \times_{\mathcal{E}} P$. The coaction on $\mathrm{C}^*_{\mathsf{rep}}(\mathcal{E})$ induces a coaction $\delta \colon A \times_{\mathcal{E}} P \to (A \times_{\mathcal{E}} P) \otimes \mathrm{C}^*(G)$.

Theorem (S., 19)

The representation $j = \{j_p\}_{p \in P}$ is injective and a *-homomorphism $\hat{\pi} : A \times_{\mathcal{E}} P \to B$ is faithful on the fixed-point algebra $(A \times_{\mathcal{E}} P)^{\delta}$ if and only if it is faithful on A.

Examples:

- \diamond The full analogue of the Toeplitz algebra $\mathcal{T}_{\lambda}(P)$ of P.
- \diamond If $\mathcal{E} = \mathbb{C}^P$, then $\mathbb{C} \times_{\mathbb{C}^P} P$ is canonically isomorphic to the full analogue of the boundary quotient $\partial \mathcal{T}_{\lambda}(P)$ (Laca-S., 21).

C*-envelopes of cosystems

C*-envelope $C_{\text{env}}^*(\mathcal{T}_{\lambda}(\mathcal{E})^+, G, \bar{\delta}^+)$.

 \diamond If $\mathcal E$ is a compactly aligned product system over an abelian lattice order, then $A \times_{\mathcal E} P \cong \mathrm{C}^*_{\mathrm{env}}(\mathcal T_\lambda(\mathcal E)^+)$ canonically **(DorOn-Katsoulis, 20)**.

(DKKLL, 21): In general, there is a gauge coaction $\bar{\delta} \colon \mathcal{T}_{\lambda}(\mathcal{E}) \to \mathcal{T}_{\lambda}(\mathcal{E}) \otimes \mathrm{C}^{*}(G)$, which restricts to a coaction $\bar{\delta}^{+}$ on $\mathcal{T}_{\lambda}(\mathcal{E})^{+}$. The triple $(\mathcal{T}_{\lambda}(\mathcal{E})^{+}, G, \bar{\delta}^{+})$ is a *cosystem*, and we can consider the coaction

Theorem (DorOn-Kakariadis-Katsoulis-Laca-Li, 20)

Let P be a right LCM submonoid of a group G and let $\mathcal E$ be a compactly aligned product system over P. Then there is a canonical isomorphism

$$C_r^*(([A \times_{\mathcal{E}} P]_g)_{g \in G}) \cong C_{\text{env}}^*(\mathcal{T}_{\lambda}(\mathcal{E})^+, G, \overline{\delta}^+).$$

(KKLL, 21): $\partial \mathcal{T}_{\lambda}(P) \cong \mathrm{C}^*_{\mathrm{env}}(\mathcal{T}_{\lambda}(P)^+, G, \bar{\delta}^+)$ canonically.

Reduced covariance algebras as C*-envelopes

Theorem (S., 21)

Let P be a submonoid of a group G and let $\mathcal{E} = (\mathcal{E}_p)_{p \in P}$ be a product system over P with coefficient C^* -algebra A. The following C^* -algebras associated to \mathcal{E} are canonically isomorphic:

- (1) the C^* -envelope $C^*_{\mathrm{env}}(\mathcal{T}_{\lambda}(\mathcal{E})^+)$;
- (2) the reduced cross sectional C*-algebra of the Fell bundle $([A \times_{\mathcal{E}} P]_g)_{g \in G}$ associated to the covariance algebra of \mathcal{E} ;
- (3) the C*-envelope of the cosystem $(\mathcal{T}_{\lambda}(\mathcal{E})^+, G, \bar{\delta}^+)$.

Note that $A \times_{\mathcal{E}} P \cong C^* (([A \times_{\mathcal{E}} P]_g)_{g \in G})$.

Reduced covariance algebra and coaction C*-envelope

Proposition (S., 21)

Let $\hat{\pi} : \mathcal{T}_{\lambda}(\mathcal{E}) \to B$ be a *-homomorphism induced by an injective representation $\pi = \{\pi_p\}_{p \in P}$ of \mathcal{E} in B. Suppose that there exists a conditional expectation $E_{\pi} : \hat{\pi}(\mathcal{T}_{\lambda}(\mathcal{E})) \to \hat{\pi}(\mathcal{T}_{\lambda}(\mathcal{E})_{e})$ such that the diagram

$$\mathcal{T}_{\lambda}(\mathcal{E}) \xrightarrow{\hat{\pi}} \hat{\pi}(\mathcal{T}_{\lambda}(\mathcal{E}))$$

$$E_{\lambda} \downarrow \qquad E_{\pi} \downarrow$$

$$\mathcal{T}_{\lambda}(\mathcal{E})_{e} \xrightarrow{\hat{\pi}} \hat{\pi}(\mathcal{T}_{\lambda}(\mathcal{E})_{e})$$

commutes. Then the restriction of $\hat{\pi}$ to the tensor algebra $\mathcal{T}_{\lambda}(\mathcal{E})^{+}$ is completely isometric.

This implies $C_r^*(([A \times_{\mathcal{E}} P]_g)_{g \in G}) \cong C_{\text{env}}^*(\mathcal{T}_{\lambda}(\mathcal{E})^+, G, \bar{\delta}^+)$ ((2) \(\text{\text{\$\infty}\$}(3)).

Idea of proof

Consider $b := \sum_s \psi_s(\xi_s) \in \mathcal{T}_{\lambda}(\mathcal{E})^+$ and $\eta = \sum_r \eta_r \in \mathcal{E}^+ = \bigoplus_{p \in P} \mathcal{E}_p$. Setting $\eta'_n := \sum_{sr=p} \psi_s(\xi_s) \eta_r$ and using that π is injective, we have that

$$\|\sum_{p} \pi_{e}(\langle \eta'_{p} | \eta'_{p} \rangle)\| = \|\sum_{p} \langle \eta'_{p} | \eta'_{p} \rangle\| = \|\sum_{s} \psi(\xi_{s}) \eta\|^{2} = \|b\eta\|^{2}.$$
 (†)

Now in B

$$\sum_{p,q} \pi_{p}(\eta_{p}')^{*} \pi_{q}(\eta_{q}') = \left(\sum_{r} \pi_{r}(\eta_{r})\right)^{*} \left(\sum_{s,t} \pi_{s}(\xi_{s})^{*} \pi_{t}(\xi_{t})\right) \left(\sum_{r} \pi_{r}(\eta_{r})\right)$$

$$\leq \|\sum_{s} \pi_{s}(\xi_{s})\|^{2} \sum_{r,r'} \pi_{r}(\eta_{r})^{*} \pi_{r'}(\eta_{r'}). \tag{\dagger\dagger}$$

Applying E_{π} yields $\|\sum_{s} \psi_{s}(\xi_{s})\eta\|^{2} \leq \|\sum_{s} \pi_{s}(\xi_{s})\|^{2} \|\eta\|^{2} = \|\hat{\pi}(b)\|^{2} \|\eta\|^{2}$. This shows that $\hat{\pi}$ is isometric on $\mathcal{T}_{\lambda}(\mathcal{E})^{+}$.

An inequality for completely isometric homomorphisms

Lemma (S., 21)

Let $\hat{\pi} : \mathcal{T}_{\lambda}(\mathcal{E})^+ \to B$ be a completely isometric homomorphism induced by a representation $\pi = \{\pi_p\}_{p \in P}$ of \mathcal{E} in B. Then for every $n \geq 1$, finite sets $F_1, F_2, \ldots, F_n \subset P$ and choice of elements $\xi_p \in \mathcal{E}_p$ for $p \in F_i$, $i = 1, \ldots, n$, we have

$$\|\sum_{i=1}^{n}\sum_{p\in F_{i}}\pi_{e}(\langle\xi_{p}\,|\,\xi_{p}\rangle)\|\leq \|\sum_{i=1}^{n}\sum_{p,q\in F_{i}}\pi_{p}(\xi_{p})^{*}\pi_{q}(\xi_{q})\|.$$

Idea: There is $b \in \mathbb{M}_n(\mathcal{T}_{\lambda}(\mathcal{E})^+)$ such that

$$\|\sum_{i=1}^n \sum_{p,q\in F_i} \psi_p(\xi_p)^* \psi_q(\xi_q)\| = \|b^*b\| = \|b\|^2.$$

Conditional expectation on the C^* -envelope of $\mathcal{T}_{\lambda}(\mathcal{E})^+$

Proposition (S., 21)

Let $\pi = \{\pi_p\}_{p \in P}$ be an injective strongly covariant representation of $\mathcal E$ in a C^* -algebra B and let $\hat \pi \colon A \times_{\mathcal E} P \to B$ be the induced *-homomorphism. Then the following are equivalent:

- (1) There exists a conditional expectation E_{π} : $\hat{\pi}(A \times_{\mathcal{E}} P) \to \hat{\pi}((A \times_{\mathcal{E}} P)^{\delta})$ such that $\hat{\pi} \circ E^{\delta} = E_{\pi} \circ \hat{\pi}$.
- (2) For every $n \ge 1$, finite sets $F_1, F_2, \ldots, F_n \subset P$ and elements $\xi_p \in \mathcal{E}_p$ for $p \in F_i$, $i = 1, \ldots, n$, we have that

$$\|\sum_{i=1}^{n}\sum_{p\in F_{i}}\pi_{e}(\langle\xi_{p}\,|\,\xi_{p}\rangle)\|\leq \|\sum_{i=1}^{n}\sum_{p,q\in F_{i}}\pi_{p}(\xi_{p})^{*}\pi_{q}(\xi_{q})\|.$$

This implies $C_r^*(([A \times_{\mathcal{E}} P]_g)_{g \in G}) \cong C_{\text{env}}^*(\mathcal{T}_{\lambda}(\mathcal{E})^+)$ ((1) \cong (2)).

Co-universal property of $C^*_{env}(\mathcal{T}_{\lambda}(\mathcal{E})^+)$

Corollary (S.,21)

Let $(\mathcal{T}_{\lambda}(\mathcal{E})_{g})_{g \in G}$ be the Fell bundle associated to the coaction $\bar{\delta}$ of G on $\mathcal{T}_{\lambda}(\mathcal{E})$. Then the C*-envelope $C^*_{env}(\mathcal{T}_{\lambda}(\mathcal{E})^+)$ satisfies the following:

- (1) there is a coaction δ_{Λ} on $C^*_{env}(\mathcal{T}_{\lambda}(\mathcal{E})^+)$ for which the representation of \mathcal{E} induced by the inclusion of $\mathcal{T}_{\lambda}(\mathcal{E})^+$ is gauge-compatible;
- (2) if (B, G, γ) is a coaction and $\pi = \{\pi_p\}_{p \in P}$ is an injective representation of $\mathcal E$ in B that is gauge-compatible with γ and induces a surjective *-homomorphism $\hat{\pi} \colon \mathrm{C}^*((\mathcal T_\lambda(\mathcal E)_g)_{g \in G}) \to B$, then there exists a $\gamma \delta_\Lambda$ -equivariant surjective *-homomorphism $\rho \colon B \to \mathrm{C}^*_{\mathrm{env}}(\mathcal T_\lambda(\mathcal E)^+)$ that identifies $\mathcal E$.

Thanks!