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Free actions of groups on spaces

G - topological group, X - topological (right) G-space.

We say that X is a free G-space if, given g, h ∈ G, the existence of
x ∈ X such that xg = xh implies g = h.

Why free actions?
They have good "descent" properties: G-equivariant structures
on X can be recast as analogous structures on X/G.
A contractible free G-space EG can be used to define the
equivariant cohomology of any G-space (Borel, 1959).
Let G be a compact group and X is a compact G-space.
Then X is free if and only if the natural map
K∗(X/G)→ K∗

G(X) (Atiyah and Segal, 1968).
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Free actions of groups on C*-algebras

G - compact group, A - unital G-C*-algebra

Definition (Rieffel)

A G-action on A is saturated if a certain bimodule implements a
Morita equivalence between the fixed-point subalgebra AG

(noncommutative analog of X/G) and the crossed product AoG.

There are many other noncommutative generalizations of free
actions:

N. C. Phillips. Equivariant K-theory and freeness of group actions on
C*-algebras, 1987.

N. C. Phillips. Free actions of finite groups on C*-algebras, 2009.

D. Ellwood. A new characterisation of principal actions, 2000.

K. De Commer, M. Yamashita. A construction of finite index C*-algebra
inclusions from free actions of compact quantum groups, 2013.
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Two competing definitions of PBs in the 50’s

G - topological group, X - topological (right) G-space.

Principal bundle (H. Cartan)

We say that π : X → X/G is a Cartan principal G-bundle if

G acts freely on X,
τ : X ×

X/G
X → G is continuous, τ(x, y) = g ⇐⇒ xg = y.

Principal bundle (N. Steenrod)

We say that π : X → X/G is a Steenrod principal G-bundle if

∀ y ∈ X/G ∃ open nbhd U of y and ϕ : π−1(U)→ U ×G
fiber-preserving G-homeomorphism.

R. S. Palais, On the existence of slices for actions of non-compact
Lie groups, Ann. of Math. (2) 73 1961 295–323.
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This is trivial.

Let X be a locally compact space and G a locally compact group
acting on X. We say that a principal G-bundle X → X/G is trivial
if X ∼= X/G×G as G-spaces.

Wrong!
In the compact case, a seemingly reasonable choice is to say that A
is trivial as a G-C*-algebra if A ∼= AG ⊗ C(G). However, this
definition excludes many examples and does not work beyond the
compact case.

Triviality is equivalent to the existence of a G-equivariant map
X → G.

Right!

We say that A is trivial as a G-C*-algebra if there is a G-equivariant
non-degenerate ∗-homomorphism C0(G)→M(A).
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A trivial example

Example

For a locally compact group G, let K := K(L2(G)) be the
C*-algebra of compact operators on L2(G) (where we take the
Haar measure on G), and let λ : G→ U(B(L2(G)) be the
left-regular representation.

Define a G-action on K by

T 7→ λ(g)Tλ(g)∗, T ∈ K, g ∈ G.

Then there exists a non-degenerate G-equivariant ∗-homomorphism

C0(G) −→M(K) ∼= B(L2(G)).
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Classically local trivial G-C*-algebras (I)

Let π : Y → Y/G be a locally compact Steenrod principal
G-bundle and let A be a G-C*-algebra. Let us use the concept of
the C0(Y )-algebra of Kasparov.

Definition
We say that A is classically locally trivial as a G-C*-algebra if there
exists a G-equivariant ∗-homomorphism χ : C0(Y )→ Z(M(A))
such that χ(C0(Y ))A is norm dense in A.

Proposition

Let G be a locally compact group acting on a C*-algebra A with
the Hausdorff spectrum Â. Then Â→ Â/G is a Steenrod principal
G-bundle if and only if A is a classically locally trivial G-C*-algebra.
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Classically local trivial G-C*-algebras (II)

Some remarks:

The class of classically locally trivial G-C*-algebras include all
G-C*-algebras of the form C0(X) such that X → X/G is a
Steenrod principal G-bundle. It also include examples coming
from locally unitary actions considered by J. Phillips and
I. Raeburn.
If Y and G are second countable and G is additionally torsion
free, then classically locally trivial algebras are exactly the
proper algebras of Guentner, Higson, and Trout, where the
notion of proper action is meant in the sense of Baum,
Connes, and Higson.
Most trivial G-C*-algebras in the sense introduced during the
talk are not classically locally trivial. Moreover, for any
Steenrod principal G-bundle Y → Y/G there is a classically
locally trivial G-C*-algebra C0(Y,K(L2(G))), which is in fact
trivial as G-C*-algebras.
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Reformulation of local triviality (I)

We do not generalize the notion of an open cover to the
noncommutative setting, but rather the partition of unity {σi}
subordinated to it. This means that we have to assume that
the bundle is numerable.
In the locally compact case the trivializing cover of X may
have infinite cardinality, so there is a question of convergence
of
∑

i σi. Moreover, the partition of unity functions
σi : X → [0, 1] will only be bounded in this case. They are not
compactly supported or vanishing at infinity.
Numerable principal G-bundle are classified using the universal
principal G-bundle EG which is not locally compact. Hence,
we have to go beyond the Gelfand–Naimark duality.



Reformulation of local triviality (I)

We do not generalize the notion of an open cover to the
noncommutative setting, but rather the partition of unity {σi}
subordinated to it. This means that we have to assume that
the bundle is numerable.

In the locally compact case the trivializing cover of X may
have infinite cardinality, so there is a question of convergence
of
∑

i σi. Moreover, the partition of unity functions
σi : X → [0, 1] will only be bounded in this case. They are not
compactly supported or vanishing at infinity.
Numerable principal G-bundle are classified using the universal
principal G-bundle EG which is not locally compact. Hence,
we have to go beyond the Gelfand–Naimark duality.



Reformulation of local triviality (I)

We do not generalize the notion of an open cover to the
noncommutative setting, but rather the partition of unity {σi}
subordinated to it. This means that we have to assume that
the bundle is numerable.
In the locally compact case the trivializing cover of X may
have infinite cardinality, so there is a question of convergence
of
∑

i σi. Moreover, the partition of unity functions
σi : X → [0, 1] will only be bounded in this case. They are not
compactly supported or vanishing at infinity.

Numerable principal G-bundle are classified using the universal
principal G-bundle EG which is not locally compact. Hence,
we have to go beyond the Gelfand–Naimark duality.



Reformulation of local triviality (I)

We do not generalize the notion of an open cover to the
noncommutative setting, but rather the partition of unity {σi}
subordinated to it. This means that we have to assume that
the bundle is numerable.
In the locally compact case the trivializing cover of X may
have infinite cardinality, so there is a question of convergence
of
∑

i σi. Moreover, the partition of unity functions
σi : X → [0, 1] will only be bounded in this case. They are not
compactly supported or vanishing at infinity.
Numerable principal G-bundle are classified using the universal
principal G-bundle EG which is not locally compact. Hence,
we have to go beyond the Gelfand–Naimark duality.



Reformulation of local triviality (II)

G - locally compact Hausdorff group, X - locally compact
Hausdorff G-space, CG - cone over G,

t : CG→ [0, 1] : [(t, g)] 7→ t.

Theorem (MT)

X → X/G is a numerable Steenrod principal G-bundle if and only
if there exist G-equivariant maps

φi : X → CG, i ∈ N,

such that (
∑n

i=0 t ◦ φi)n converges to 1 in the compact-open
topology.
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Compact case: the local-triviality dimension

Definition (E. Gardella, P. M. Hajac, MT, J. Wu)

Let G be a compact group and let A be a unital G-C*-algebra.
The local-triviality dimension dimG

LT(A) is the minimal number n
such that there exist G-equivariant unital ∗-homomorphisms

ρ0, . . . , ρn : C(CG)→ A

satisfying
∑d

i=0 ρi(t) = 1. We set dimG
LT(A) =∞ if no such n

exists.

Dimension zero = triviality

dimG
LT(A) = 0 ⇒ ∃ G-equivariant unital ∗-homomoprhism

C(G)→ A.
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Multipliers of the Pedersen ideal (I)

Question: What is the analog of C(X) in noncommutative
topology for a locally compact X?

Let A+ denote the positive elements of a C*-algebra A. Let K+
0

consists of all a ∈ A+ for which there exists b ∈ A+ such that for
all functions ϕ, continuous on the spectrum of a, 0 ≤ ϕ ≤ 1, we
have ϕ(a) ≤ b. Define

K+ :=

{
a ∈ A+

∣∣∣ ∃ai ∈ K+
0 , i = 1, 2, . . . , n, a ≤

∑
i

ai

}
.

Definition (Pedersen ideal)

KA := span{k | k ∈ K+} ⊆ A.

Theorem (Pedersen ’66)

KA is a two-sided, dense, order-related ideal in A, minimal among
all such.
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Multipliers of the Pedersen ideal (II)

By a (double) multiplier of KA we mean a pair (S, T ) of functions
from KA to KA satisfying

k1S(k2) = T (k1)k2 , k1 , k2 ∈ KA.

Let Γ(KA) denote the set of all multipliers of KA.

One can show that Γ(KA) is a unital ∗-algebra and that
M(A) ⊆ Γ(KA). The following seminorms

(S, T ) 7→ ‖S(k)‖, (S, T ) 7→ ‖T (k)‖, k ∈ KA ,

define the κ-topology on Γ(KA) (Lazar–Taylor ’76).

Theorem (Pedersen, Lazar–Taylor)

Let A = C0(X) for some locally compact space X. Then

KA = Cc(X), Γ(KA) = C(X),

and the κ-topology agrees with the compact-open topology.
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Finally! Locally trivial G-C*-algebra

Let G be a locally compact group and let A be a G-C*-algebra.

On
C(CG) we consider the compact-open topology and on Γ(KA) we
consider the κ-topology.

Definition (MT)

We say that A is locally trivial as a G-C*-algebra if there exist
G-equivariant unital continuous ∗-homomorphisms

ρi : C(CG)→ Γ(KA), i ∈ N,

such that (
∑n

i=0 ρi(t))n converges to 1 in the κ-topology.
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The classical case

Let G be a locally compact group and let A be a commutative
G-C*-algebra. Then A = C0(X) for some locally compact
Hausdorff G-space X.

Theorem (MT)

A is locally trivial as a G-C*-algebra if and only if X → X/G is a
numerable Steenrod principal G-bundle.

Since Γ(KA) = C(X) for A = C0(X) and the κ-topology coincides
with the compact-open topology, the result follows from the our
reformulation of Steenrod principal G-bundles.
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Local triviality implies classical local triviality

Lemma (MT)

Let χ : C0(X)→ Z(M(A)) be a G-equivariant ∗-homomorphism
such that χ(C0(X))A is norm dense in A. Then χ extends to a
G-equivariant unital ∗-homomorphism C(X)→ Γ(KA), which is
continous with respect to the compact-open topology on C(X) and
the κ-topology on Γ(KA).

Proposition (MT)

Every classically locally trivial G-C*-algebra is locally trivial.
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The local-triviality dimension

Let G be a compact group and let A be a unital G-C*-algebra.

If A has a unit, then Γ(KA) = A and the κ-topology coincides with
the norm topology. Furthermore, if G is compact then so is CG.
Hence C(CG) is a unital C*-algebra and the compact-open
topology on it coincides with the norm topology.

Proposition (MT)

If dimG
LT(A) <∞, then A is locally trivial as a G-C*-algebra.

Question: Can we prove that for unital locally trivial G-C*-algebras
the family of ∗-homomorphisms ρi : C(CG)→ A has to be finite?
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Outlook

1 Local triviality implies freeness in the sense of Ellwood.
2 Let A and B be G-C*-algebras. What are the morphisms

between A and B for which if A is locally trivial then B is also
locally trivial.

3 More examples! Including the purely noncommutative ones.
4 Generalize all above to actions of locally compact quantum

groups.
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Thanks!


