Noncommutative principal bundles from group actions on C*-algebras

Mariusz Tobolski

University of Wrocław

Noncommutative Analysis at the Technion in honor of Paul S. Muhly 28 June 2022

Free actions of groups on spaces

Free actions of groups on spaces

G - topological group, X - topological (right) G-space.

G - topological group, X - topological (right) G-space.

We say that X is a *free* G-space if, given $g, h \in G$, the existence of $x \in X$ such that xg = xh implies g = h.

We say that X is a *free* G-space if, given $g, h \in G$, the existence of $x \in X$ such that xg = xh implies g = h.

Why free actions?

We say that X is a *free* G-space if, given $g, h \in G$, the existence of $x \in X$ such that xg = xh implies g = h.

Why free actions?

• They have good "descent" properties: *G*-equivariant structures on *X* can be recast as analogous structures on *X*/*G*.

We say that X is a *free* G-space if, given $g, h \in G$, the existence of $x \in X$ such that xg = xh implies g = h.

Why free actions?

- They have good "descent" properties: *G*-equivariant structures on *X* can be recast as analogous structures on *X*/*G*.
- A contractible free *G*-space *EG* can be used to define the equivariant cohomology of any *G*-space (Borel, 1959).

We say that X is a *free* G-space if, given $g, h \in G$, the existence of $x \in X$ such that xg = xh implies g = h.

Why free actions?

- They have good "descent" properties: *G*-equivariant structures on *X* can be recast as analogous structures on *X*/*G*.
- A contractible free *G*-space *EG* can be used to define the equivariant cohomology of any *G*-space (Borel, 1959).
- Let G be a compact group and X is a compact G-space. Then X is free if and only if the natural map $K^*(X/G) \to K^*_G(X)$ (Atiyah and Segal, 1968).

Free actions of groups on C*-algebras

G - compact group, A - unital $G\\mbox{-}C\\mbox{*-algebra}$

Free actions of groups on C*-algebras

G - compact group, A - unital $G\mbox{-}C\mbox{*-algebra}$

Definition (Rieffel)

A *G*-action on *A* is *saturated* if a certain bimodule implements a Morita equivalence between the fixed-point subalgebra A^G (noncommutative analog of X/G) and the crossed product $A \rtimes G$.

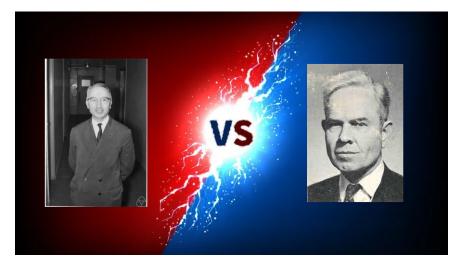
G - compact group, A - unital $G\mbox{-}C\mbox{*-algebra}$

Definition (Rieffel)

A *G*-action on *A* is *saturated* if a certain bimodule implements a Morita equivalence between the fixed-point subalgebra A^G (noncommutative analog of X/G) and the crossed product $A \rtimes G$.

There are many other noncommutative generalizations of free actions:

- N. C. Phillips. Equivariant K-theory and freeness of group actions on C*-algebras, 1987.
- N. C. Phillips. Free actions of finite groups on C*-algebras, 2009.
- D. Ellwood. A new characterisation of principal actions, 2000.
- K. De Commer, M. Yamashita. A construction of finite index C*-algebra inclusions from free actions of compact quantum groups, 2013.



G - topological group, X - topological (right) G-space.

 ${\cal G}$ - topological group, ${\cal X}$ - topological (right) ${\cal G}\text{-space}.$

Principal bundle (H. Cartan)

We say that $\pi: X \to X/G$ is a Cartan principal G-bundle if

 ${\cal G}$ - topological group, ${\cal X}$ - topological (right) ${\cal G}\text{-space}.$

Principal bundle (H. Cartan)

We say that $\pi : X \to X/G$ is a *Cartan principal G-bundle* if • *G* acts freely on *X*,

 ${\cal G}$ - topological group, ${\cal X}$ - topological (right) ${\cal G}\text{-space}.$

Principal bundle (H. Cartan)

We say that $\pi: X \to X/G$ is a Cartan principal G-bundle if

- G acts freely on X,
- $\tau: X \underset{X/G}{\times} X \to G$ is continuous, $\tau(x,y) = g \iff xg = y.$

 ${\cal G}$ - topological group, ${\cal X}$ - topological (right) ${\cal G}\text{-space}.$

Principal bundle (H. Cartan)

We say that $\pi: X \to X/G$ is a Cartan principal G-bundle if

- G acts freely on X,
- $\tau: X \underset{X/G}{\times} X \to G$ is continuous, $\tau(x,y) = g \iff xg = y.$

Principal bundle (N. Steenrod)

We say that $\pi: X \to X/G$ is a Steenrod principal G-bundle if

 ${\cal G}$ - topological group, ${\cal X}$ - topological (right) ${\cal G}\text{-space}.$

Principal bundle (H. Cartan)

We say that $\pi: X \to X/G$ is a Cartan principal G-bundle if

- G acts freely on X,
- $\tau: X \underset{X/G}{\times} X \to G$ is continuous, $\tau(x,y) = g \iff xg = y.$

Principal bundle (N. Steenrod)

We say that $\pi: X \to X/G$ is a Steenrod principal G-bundle if

• $\forall y \in X/G \exists$ open nbhd U of y and $\varphi : \pi^{-1}(U) \to U \times G$ fiber-preserving G-homeomorphism.

 ${\cal G}$ - topological group, ${\cal X}$ - topological (right) ${\cal G}\text{-space}.$

Principal bundle (H. Cartan)

We say that $\pi: X \to X/G$ is a Cartan principal G-bundle if

- G acts freely on X,
- $\tau: X \underset{X/G}{\times} X \to G$ is continuous, $\tau(x,y) = g \iff xg = y.$

Principal bundle (N. Steenrod)

We say that $\pi: X \to X/G$ is a Steenrod principal G-bundle if

• $\forall y \in X/G \exists$ open nbhd U of y and $\varphi : \pi^{-1}(U) \to U \times G$ fiber-preserving G-homeomorphism.

R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 1961 295–323.

Let X be a locally compact space and G a locally compact group acting on X. We say that a principal G-bundle $X \to X/G$ is trivial if $X \cong X/G \times G$ as G-spaces.

This is trivial.

Let X be a locally compact space and G a locally compact group acting on X. We say that a principal G-bundle $X \to X/G$ is trivial if $X \cong X/G \times G$ as G-spaces.

Wrong!

In the compact case, a seemingly reasonable choice is to say that A is trivial as a G-C*-algebra if $A\cong A^G\otimes C(G)$. However, this definition excludes many examples and does not work beyond the compact case.

This is trivial.

Let X be a locally compact space and G a locally compact group acting on X. We say that a principal G-bundle $X \to X/G$ is trivial if $X \cong X/G \times G$ as G-spaces.

Wrong!

In the compact case, a seemingly reasonable choice is to say that A is trivial as a G-C*-algebra if $A\cong A^G\otimes C(G)$. However, this definition excludes many examples and does not work beyond the compact case.

Triviality is equivalent to the existence of a $G\mbox{-equivariant}$ map $X\to G.$

This is trivial.

Let X be a locally compact space and G a locally compact group acting on X. We say that a principal G-bundle $X \to X/G$ is trivial if $X \cong X/G \times G$ as G-spaces.

Wrong!

In the compact case, a seemingly reasonable choice is to say that A is trivial as a $G\text{-}\mathsf{C}^*\text{-}\mathsf{algebra}$ if $A\cong A^G\otimes C(G).$ However, this definition excludes many examples and does not work beyond the compact case.

Triviality is equivalent to the existence of a $G\mbox{-equivariant}$ map $X\to G.$

Right!

We say that A is *trivial* as a G-C*-algebra if there is a G-equivariant non-degenerate *-homomorphism $C_0(G) \rightarrow M(A)$.

Example

For a locally compact group G, let $\mathcal{K} := \mathcal{K}(L^2(G))$ be the C*-algebra of compact operators on $L^2(G)$ (where we take the Haar measure on G), and let $\lambda : G \to U(B(L^2(G)))$ be the left-regular representation.

Example

For a locally compact group G, let $\mathcal{K} := \mathcal{K}(L^2(G))$ be the C*-algebra of compact operators on $L^2(G)$ (where we take the Haar measure on G), and let $\lambda : G \to U(B(L^2(G)))$ be the left-regular representation.

Define a G-action on \mathcal{K} by

$$T \mapsto \lambda(g)T\lambda(g)^*, \qquad T \in \mathcal{K}, \quad g \in G.$$

Example

For a locally compact group G, let $\mathcal{K} := \mathcal{K}(L^2(G))$ be the C*-algebra of compact operators on $L^2(G)$ (where we take the Haar measure on G), and let $\lambda : G \to U(B(L^2(G)))$ be the left-regular representation.

Define a G-action on \mathcal{K} by

$$T \mapsto \lambda(g)T\lambda(g)^*, \qquad T \in \mathcal{K}, \quad g \in G.$$

Then there exists a non-degenerate G-equivariant *-homomorphism

$$C_0(G) \longrightarrow M(\mathcal{K}) \cong B(L^2(G)).$$

Let $\pi: Y \to Y/G$ be a locally compact Steenrod principal G-bundle and let A be a G-C*-algebra. Let us use the concept of the $C_0(Y)$ -algebra of Kasparov.

Let $\pi: Y \to Y/G$ be a locally compact Steenrod principal G-bundle and let A be a G-C*-algebra. Let us use the concept of the $C_0(Y)$ -algebra of Kasparov.

Definition

We say that A is classically locally trivial as a G-C*-algebra if there exists a G-equivariant *-homomorphism $\chi : C_0(Y) \to Z(M(A))$ such that $\chi(C_0(Y))A$ is norm dense in A.

Let $\pi: Y \to Y/G$ be a locally compact Steenrod principal G-bundle and let A be a G-C*-algebra. Let us use the concept of the $C_0(Y)$ -algebra of Kasparov.

Definition

We say that A is classically locally trivial as a G-C*-algebra if there exists a G-equivariant *-homomorphism $\chi : C_0(Y) \to Z(M(A))$ such that $\chi(C_0(Y))A$ is norm dense in A.

Proposition

Let G be a locally compact group acting on a C*-algebra A with the Hausdorff spectrum \widehat{A} . Then $\widehat{A} \to \widehat{A}/G$ is a Steenrod principal G-bundle if and only if A is a classically locally trivial G-C*-algebra.

Some remarks:

Some remarks:

• The class of classically locally trivial G-C*-algebras include all G-C*-algebras of the form $C_0(X)$ such that $X \to X/G$ is a Steenrod principal G-bundle. It also include examples coming from locally unitary actions considered by J. Phillips and I. Raeburn.

Some remarks:

- The class of classically locally trivial G-C*-algebras include all G-C*-algebras of the form $C_0(X)$ such that $X \to X/G$ is a Steenrod principal G-bundle. It also include examples coming from locally unitary actions considered by J. Phillips and I. Raeburn.
- If Y and G are second countable and G is additionally torsion free, then classically locally trivial algebras are exactly the *proper algebras* of Guentner, Higson, and Trout, where the notion of proper action is meant in the sense of Baum, Connes, and Higson.

Some remarks:

- The class of classically locally trivial G-C*-algebras include all G-C*-algebras of the form $C_0(X)$ such that $X \to X/G$ is a Steenrod principal G-bundle. It also include examples coming from locally unitary actions considered by J. Phillips and I. Raeburn.
- If Y and G are second countable and G is additionally torsion free, then classically locally trivial algebras are exactly the *proper algebras* of Guentner, Higson, and Trout, where the notion of proper action is meant in the sense of Baum, Connes, and Higson.
- Most trivial G-C*-algebras in the sense introduced during the talk are not classically locally trivial. Moreover, for any Steenrod principal G-bundle $Y \rightarrow Y/G$ there is a classically locally trivial G-C*-algebra $C_0(Y, \mathcal{K}(L^2(G)))$, which is in fact trivial as G-C*-algebras.

Reformulation of local triviality (I)

• We do not generalize the notion of an open cover to the noncommutative setting, but rather the partition of unity $\{\sigma_i\}$ subordinated to it. This means that we have to assume that the bundle is numerable.

- We do not generalize the notion of an open cover to the noncommutative setting, but rather the partition of unity $\{\sigma_i\}$ subordinated to it. This means that we have to assume that the bundle is numerable.
- In the locally compact case the trivializing cover of X may have infinite cardinality, so there is a question of convergence of $\sum_i \sigma_i$. Moreover, the partition of unity functions $\sigma_i : X \to [0, 1]$ will only be bounded in this case. They are not compactly supported or vanishing at infinity.

- We do not generalize the notion of an open cover to the noncommutative setting, but rather the partition of unity $\{\sigma_i\}$ subordinated to it. This means that we have to assume that the bundle is numerable.
- In the locally compact case the trivializing cover of X may have infinite cardinality, so there is a question of convergence of $\sum_i \sigma_i$. Moreover, the partition of unity functions $\sigma_i : X \to [0, 1]$ will only be bounded in this case. They are not compactly supported or vanishing at infinity.
- Numerable principal G-bundle are classified using the universal principal G-bundle EG which is not locally compact. Hence, we have to go beyond the Gelfand–Naimark duality.

G - locally compact Hausdorff group, X - locally compact Hausdorff $G\text{-space},\,\mathcal{C}G$ - cone over G,

 $\mathbf{t}: \mathcal{C}G \to [0,1] : [(t,g)] \mapsto t.$

Reformulation of local triviality (II)

G - locally compact Hausdorff group, X - locally compact Hausdorff $G\text{-space},\ \mathcal{C}G$ - cone over G,

 $\mathbf{t}: \mathcal{C}G \to [0,1] : [(t,g)] \mapsto t.$

Theorem (MT)

 $X \to X/G$ is a numerable Steenrod principal G-bundle if and only if there exist G-equivariant maps

$$\phi_i: X \to \mathcal{C}G, \qquad i \in \mathbb{N},$$

such that $(\sum_{i=0}^{n} t \circ \phi_i)_n$ converges to 1 in the compact-open topology.

Definition (E. Gardella, P. M. Hajac, MT, J. Wu)

Let G be a compact group and let A be a unital G-C*-algebra. The local-triviality dimension $\dim_{\mathrm{LT}}^G(A)$ is the minimal number n such that there exist G-equivariant unital *-homomorphisms

$$\rho_0,\ldots,\rho_n:C(\mathcal{C}G)\to A$$

satisfying $\sum_{i=0}^{d} \rho_i(\mathbf{t}) = 1$. We set $\dim_{\mathrm{LT}}^G(A) = \infty$ if no such n exists.

Definition (E. Gardella, P. M. Hajac, MT, J. Wu)

Let G be a compact group and let A be a unital G-C*-algebra. The local-triviality dimension $\dim_{\mathrm{LT}}^G(A)$ is the minimal number n such that there exist G-equivariant unital *-homomorphisms

$$\rho_0, \ldots, \rho_n : C(\mathcal{C}G) \to A$$

satisfying $\sum_{i=0}^{d} \rho_i(\mathbf{t}) = 1$. We set $\dim_{\mathrm{LT}}^G(A) = \infty$ if no such n exists.

Dimension zero = triviality

 $\dim^G_{\mathrm{LT}}(A)=0 \ \Rightarrow \ \exists \ G\text{-equivariant unital }*\text{-homomorphism} \\ C(G) \to A.$

Question: What is the analog of C(X) in noncommutative topology for a locally compact X?

Question: What is the analog of C(X) in noncommutative topology for a locally compact X?

Let A^+ denote the positive elements of a C*-algebra A.

Question: What is the analog of C(X) in noncommutative topology for a locally compact X?

Let A^+ denote the positive elements of a C*-algebra A. Let K_0^+ consists of all $a \in A^+$ for which there exists $b \in A^+$ such that for all functions φ , continuous on the spectrum of a, $0 \le \varphi \le 1$, we have $\varphi(a) \le b$.

Question: What is the analog of C(X) in noncommutative topology for a locally compact X?

Let A^+ denote the positive elements of a C*-algebra A. Let K_0^+ consists of all $a \in A^+$ for which there exists $b \in A^+$ such that for all functions φ , continuous on the spectrum of a, $0 \le \varphi \le 1$, we have $\varphi(a) \le b$. Define

$$K^{+} := \left\{ a \in A^{+} \mid \exists a_{i} \in K_{0}^{+}, i = 1, 2, \dots, n, \ a \leq \sum_{i} a_{i} \right\}.$$

Question: What is the analog of C(X) in noncommutative topology for a locally compact X?

Let A^+ denote the positive elements of a C*-algebra A. Let K_0^+ consists of all $a \in A^+$ for which there exists $b \in A^+$ such that for all functions φ , continuous on the spectrum of a, $0 \le \varphi \le 1$, we have $\varphi(a) \le b$. Define

$$K^{+} := \left\{ a \in A^{+} \mid \exists a_{i} \in K_{0}^{+}, i = 1, 2, \dots, n, \ a \leq \sum_{i} a_{i} \right\}.$$

Definition (Pedersen ideal)

 $K_A := \operatorname{span}\{k \mid k \in K^+\} \subseteq A.$

Question: What is the analog of C(X) in noncommutative topology for a locally compact X?

Let A^+ denote the positive elements of a C*-algebra A. Let K_0^+ consists of all $a \in A^+$ for which there exists $b \in A^+$ such that for all functions φ , continuous on the spectrum of a, $0 \le \varphi \le 1$, we have $\varphi(a) \le b$. Define

$$K^{+} := \left\{ a \in A^{+} \mid \exists a_{i} \in K_{0}^{+}, i = 1, 2, \dots, n, \ a \leq \sum_{i} a_{i} \right\}.$$

Definition (Pedersen ideal)

$$K_A := \operatorname{span}\{k \mid k \in K^+\} \subseteq A.$$

Theorem (Pedersen '66)

 K_A is a two-sided, dense, order-related ideal in A, minimal among all such.

By a (double) *multiplier* of K_A we mean a pair (S,T) of functions from K_A to K_A satisfying

$$k_1 S(k_2) = T(k_1)k_2, \qquad k_1, k_2 \in K_A.$$

By a (double) *multiplier* of K_A we mean a pair (S,T) of functions from K_A to K_A satisfying

$$k_1 S(k_2) = T(k_1)k_2, \qquad k_1, k_2 \in K_A.$$

Let $\Gamma(K_A)$ denote the set of all multipliers of K_A .

One can show that $\Gamma(K_A)$ is a unital *-algebra and that $M(A) \subseteq \Gamma(K_A)$. The following seminorms

 $(S,T) \mapsto ||S(k)||, \qquad (S,T) \mapsto ||T(k)||, \qquad k \in K_A,$

define the κ -topology on $\Gamma(K_A)$ (Lazar–Taylor '76).

By a (double) *multiplier* of K_A we mean a pair (S,T) of functions from K_A to K_A satisfying

$$k_1 S(k_2) = T(k_1)k_2, \qquad k_1, k_2 \in K_A.$$

Let $\Gamma(K_A)$ denote the set of all multipliers of K_A .

One can show that $\Gamma(K_A)$ is a unital *-algebra and that $M(A) \subseteq \Gamma(K_A)$. The following seminorms

 $(S,T) \mapsto ||S(k)||, \qquad (S,T) \mapsto ||T(k)||, \qquad k \in K_A,$

define the κ -topology on $\Gamma(K_A)$ (Lazar–Taylor '76).

Theorem (Pedersen, Lazar–Taylor)

Let $A = C_0(X)$ for some locally compact space X. Then

$$K_A = C_c(X), \qquad \Gamma(K_A) = C(X),$$

and the κ -topology agrees with the compact-open topology.

Let G be a locally compact group and let A be a G-C*-algebra.

Let G be a locally compact group and let A be a G-C*-algebra. On C(CG) we consider the compact-open topology and on $\Gamma(K_A)$ we consider the κ -topology.

Let G be a locally compact group and let A be a G-C*-algebra. On C(CG) we consider the compact-open topology and on $\Gamma(K_A)$ we consider the κ -topology.

Definition (MT)

We say that A is *locally trivial* as a G-C*-algebra if there exist G-equivariant unital continuous *-homomorphisms

$$\rho_i: C(\mathcal{C}G) \to \Gamma(K_A), \quad i \in \mathbb{N},$$

such that $(\sum_{i=0}^{n} \rho_i(\mathbf{t}))_n$ converges to 1 in the κ -topology.

Let G be a locally compact group and let A be a commutative G-C*-algebra. Then $A = C_0(X)$ for some locally compact Hausdorff G-space X.

Let G be a locally compact group and let A be a commutative G-C*-algebra. Then $A = C_0(X)$ for some locally compact Hausdorff G-space X.

Theorem (MT)

A is locally trivial as a G-C*-algebra if and only if $X \to X/G$ is a numerable Steenrod principal G-bundle.

Let G be a locally compact group and let A be a commutative G-C*-algebra. Then $A = C_0(X)$ for some locally compact Hausdorff G-space X.

Theorem (MT)

A is locally trivial as a G-C*-algebra if and only if $X \to X/G$ is a numerable Steenrod principal G-bundle.

Since $\Gamma(K_A) = C(X)$ for $A = C_0(X)$ and the κ -topology coincides with the compact-open topology, the result follows from the our reformulation of Steenrod principal *G*-bundles.

Lemma (MT)

Let $\chi : C_0(X) \to Z(M(A))$ be a *G*-equivariant *-homomorphism such that $\chi(C_0(X))A$ is norm dense in *A*. Then χ extends to a *G*-equivariant unital *-homomorphism $C(X) \to \Gamma(K_A)$, which is continous with respect to the compact-open topology on C(X) and the κ -topology on $\Gamma(K_A)$.

Lemma (MT)

Let $\chi: C_0(X) \to Z(M(A))$ be a *G*-equivariant *-homomorphism such that $\chi(C_0(X))A$ is norm dense in *A*. Then χ extends to a *G*-equivariant unital *-homomorphism $C(X) \to \Gamma(K_A)$, which is continous with respect to the compact-open topology on C(X) and the κ -topology on $\Gamma(K_A)$.

Proposition (MT)

Every classically locally trivial G-C*-algebra is locally trivial.

Let G be a compact group and let A be a unital G-C*-algebra.

If A has a unit, then $\Gamma(K_A) = A$ and the κ -topology coincides with the norm topology. Furthermore, if G is compact then so is CG. Hence C(CG) is a unital C*-algebra and the compact-open topology on it coincides with the norm topology. Let G be a compact group and let A be a unital G-C*-algebra.

If A has a unit, then $\Gamma(K_A) = A$ and the κ -topology coincides with the norm topology. Furthermore, if G is compact then so is CG. Hence C(CG) is a unital C*-algebra and the compact-open topology on it coincides with the norm topology.

Proposition (MT)

If $\dim_{\mathrm{LT}}^G(A) < \infty$, then A is locally trivial as a G-C*-algebra.

Let G be a compact group and let A be a unital G-C*-algebra.

If A has a unit, then $\Gamma(K_A) = A$ and the κ -topology coincides with the norm topology. Furthermore, if G is compact then so is CG. Hence C(CG) is a unital C*-algebra and the compact-open topology on it coincides with the norm topology.

Proposition (MT)

If $\dim_{\mathrm{LT}}^G(A) < \infty$, then A is locally trivial as a G-C*-algebra.

Question: Can we prove that for unital locally trivial G-C*-algebras the family of *-homomorphisms $\rho_i : C(CG) \to A$ has to be finite?

Outlook

1 Local triviality implies freeness in the sense of Ellwood.

- **1** Local triviality implies freeness in the sense of Ellwood.
- 2 Let A and B be G-C*-algebras. What are the morphisms between A and B for which if A is locally trivial then B is also locally trivial.

- **1** Local triviality implies freeness in the sense of Ellwood.
- 2 Let A and B be G-C*-algebras. What are the morphisms between A and B for which if A is locally trivial then B is also locally trivial.
- **6** More examples! Including the purely noncommutative ones.

- **1** Local triviality implies freeness in the sense of Ellwood.
- 2 Let A and B be G-C*-algebras. What are the morphisms between A and B for which if A is locally trivial then B is also locally trivial.
- **6** More examples! Including the purely noncommutative ones.
- Generalize all above to actions of locally compact quantum groups.

