Lévy processes on quantum groups and examples

Adam Skalski¹ Ami Viselter *,²

¹IMPAN, Warsaw

²University of Haifa

Noncommutative Analysis at the Technion in honor of Paul Muhly June 27, 2022

- 2 Locally compact quantum groups
- Rieffel deformations

Lévy processes

G - locally compact group

Definition

A *G*-valued Lévy process is a family $X = (X_t)_{t \ge 0}$ of random variables from a probability space (Ω, \mathbb{P}) to *G* such that:

 $X_0 \equiv e;$

- X has independent and stationary increments (X_{s,t} := X_s⁻¹X_t for 0 ≤ s ≤ t);
- 3 *X* is continuous.

Lévy process have been well-studied in probability $(G = \mathbb{R}, \mathbb{R}^n, \text{Lie groups}, ...)$ and in algebraic/compact QG theory.

X is called symmetric if $X_t \stackrel{\text{distr}}{=} X_t^{-1}$ for all $t \ge 0$.

X - Lévy process $(\mu_t)_{t \ge 0} := X$'s family of distributions:

 μ_t is the probability measure on *G* given by $\mu_t(E) := \mathbb{P}(X_t^{-1}(E))$.

Definition

A convolution semigroup of probability measures on *G* is a family $(\mu_t)_{t\geq 0}$ of probability measures on *G* satisfying

$$\mu_0 = \delta_e$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$)

and w^{*}-continuity: $\mu_t(f) \xrightarrow[t \to 0^+]{} \mu_0(f)$ for all $f \in C_0(G)$ $(\mu(f) := \int_G f \, d\mu)$.

If X is symmetric, so is $(\mu_t)_{t\geq 0}$ (invariant under inversion)

Examples on \mathbb{R}^n

• X – Wiener process (= Brownian motion)

$$d\mu_t(x) = (4\pi t)^{-n/2} \exp\left(-\frac{\|x\|^2}{4t}\right) dx \ (t > 0)$$

2 X – Cauchy process $d\mu_t(x) = \Gamma(\frac{n+1}{2})t \left[\pi(||x||^2 + t^2)\right]^{-\frac{n+1}{2}} dx \ (t > 0)$

Recall:

Lévy process \rightsquigarrow convolution semigroups $(\mu_t)_{t>0}$ of prob. meas. on *G*.

 \rightsquigarrow (left) convolution operators $(\mu_t \star \cdot)_{t>0}$ on $C_0(G) / L^{\infty}(G)$.

These operators form UCP semigroup, and commute with all right convolution operators $\cdot \star \mu$, $\mu \in C_0(G)^*$.

Crossed products

*C**-algebra *A*, locally compact abelian group $G \stackrel{\rho}{\sim} A$. $\rightsquigarrow C^*$ -algebra $A \rtimes_{\rho} G$ and dual action $\hat{G} \stackrel{\hat{\rho}}{\sim} A \rtimes_{\rho} G$. $M(A \rtimes_{\rho} G)$ contains "copies" of *A* and *G*, and for all $a \in A$: $\hat{\rho}$ fixes *a*; $g \cdot a \cdot g^{-1} = \rho_g(a)$, thus $g \mapsto g \cdot a \cdot g^{-1}$ is norm continuous; \hat{g} certain products of *a* belong to $A \rtimes_{\rho} G$ rather than $M(\cdots)$. These are the Landstad conditions.

Theorem (Landstad)

The Landstad conditions determine A and G $\stackrel{
ho}{\sim}$ A.

Rieffel deformations

Landstad deformation of $A \rtimes_{o} G$

 $G \stackrel{\rho}{\sim} A$ as above, 2-cocycle Φ on \hat{G} :

- $\Phi: \hat{G} \times \hat{G} \to \mathbb{T} \text{ continuous.}$
- 2 $\Phi(e, \cdot) \equiv 1 \equiv \Phi(\cdot, e),$
- **3** $\Phi(\hat{g}_1, \hat{g}_2 + \hat{g}_3)\Phi(\hat{g}_2, \hat{g}_3) = \Phi(\hat{g}_1 + \hat{g}_2, \hat{g}_3)\Phi(\hat{g}_1, \hat{g}_2).$

 \rightsquigarrow deformed action $\hat{G} \stackrel{\hat{\rho}^{\Phi}}{\sim} A \rtimes_{\rho} G$: for $\hat{g} \in \hat{G}$,

- denote $\Phi(\cdot, \hat{g}) \in C_b(\hat{G}) \hookrightarrow M(A \rtimes_o G)$ by $U_{\hat{a}}$;
- set $\hat{\rho}^{\Phi}_{\hat{\alpha}} := (\operatorname{Ad} U^*_{\hat{\alpha}}) \circ \hat{\rho}_{\hat{g}}.$

 \rightsquigarrow The elements in M(A \rtimes_{ρ} G) satisfying the Landstad conditions for

 $\hat{\rho}^{\Phi}$ in lieu of $\hat{\rho}$ form a *C*^{*}-algebra A^{Φ} . We also get an action $G \stackrel{\rho^{\Phi}}{\frown} A^{\Phi}$.

By Landstad's theorem we have $A \rtimes_{\rho} G = A^{\Phi} \rtimes_{\rho^{\Phi}} G$. The algebra A^{Φ} is called the Rieffel deformation of A Ami Viselter (University of Haifa) Lévy processes on quantum groups NCAT 2022

Motivation

"Take out" commutativity from algebras like $C_0(G)$, $L^{\infty}(G)$.

Definition (Kustermans-Vaes, '00)

A locally compact quantum group is a pair $\mathbf{G} = (L^{\infty}(\mathbf{G}), \Delta)$ such that:

- $L^{\infty}(\mathbb{G})$ is a von Neumann algebra.
- ② ∆ : L[∞](G) → L[∞](G) ⊗ L[∞](G) is a co-multiplication: a normal, faithful, unital *-homomorphism which is co-associative, i.e.,

 $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta.$

Solution 3: See State 1: See State 2: Se

Various algebras: $L^{\infty}(\mathbb{G}), C_0(\mathbb{G}), C_0^{\mathrm{u}}(\mathbb{G}).$

Example 1: G = G

$$L^{\infty}(\mathbb{G}) = L^{\infty}(G), C_{0}(\mathbb{G}) = C_{0}^{u}(\mathbb{G}) = C_{0}(G)$$
$$(\Delta f)(t, s) := f(ts).$$

Example 2: $G = \hat{G}^{\dagger}$

$$\begin{split} & L^{\infty}(\mathbb{G}) = \mathrm{VN}(G), \ C_0(\mathbb{G}) = C^*_{\mathrm{r}}(G), \ C^{\mathrm{u}}_0(\mathbb{G}) = C^*_{\mathrm{f}}(G), \\ & \Delta \lambda_g := \lambda_g \otimes \lambda_g. \end{split}$$

Examples

- Atomic examples
 - usually obtained as a deformation of a group
 - e.g.: $SU_q(n)$, $E_q(2)$, ax + b, az + b, ...
- Discrete/compact quantum groups:
 - "free": free unitary/orthogonal quantum groups, quantum symmetric groups
 - quantum automorphism groups
 - "combinatorial"
 - ► .
- Constructions
 - double crossed products
 - bicrossed products

Locally compact quantum groups

Convolution semigroups of states on $C_0^u(\mathbb{G})$:

Definition

A convolution semigroup of states on G is a family $(\mu_t)_{t\geq 0}$ of states on $C_0^u(G)$ satisfying

$$\mu_0 = \epsilon$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ $(\forall s, t \ge 0)$

and w^* -continuity at 0^+ .

Theorem (Daws)

These correspond bijectively to UCP semigroups on $L^{\infty}(\mathbb{G})/C_0^{\mathrm{u}}(\mathbb{G})/C_0(\mathbb{G})$ commuting with all right convolution operators.

G – locally compact group abelian $\Gamma \leq G$ 2-cocycle Ψ on $\hat{\Gamma}$

- Consider $\Gamma^2 \overset{\text{left-right}}{\curvearrowleft} C_0(G)$.
- Rieffel deformation $\rightsquigarrow C^*$ -algebra $C_0(G)^{\Psi}$ inside $M(C_0(G) \rtimes \Gamma^2)$.
- Deform the co-mult. on $C_0(G)$ to get a co-mult. on $C_0(G)^{\Psi}$.

Theorem (Kasprzak, Fima–Vainerman)

The above procedure yields a LCQG G^{Ψ} (in the sense of Woronowicz, and under additional assumptions, in the sense of K–V).

Remark: by $C_0(G)^{\Psi}$ we mean $C_0(G)^{\Phi}$ with $\Phi : \hat{\Gamma}^4 \to \mathbb{T}$ given by

$$\Phi(\hat{\gamma}_1,\hat{\gamma}_2,\hat{\gamma}_3,\hat{\gamma}_4):=\overline{\Psi(-\hat{\gamma}_1,-\hat{\gamma}_3)}\Psi(\hat{\gamma}_2,\hat{\gamma}_4).$$

Example

$$G := \operatorname{SL}(2, \mathbb{C}) := \{ A \in M_2(\mathbb{C}) : \det A = 1 \},\$$

$$\Gamma := \mathbb{C}_* \hookrightarrow \operatorname{SL}(2, \mathbb{C}) \text{ as } \{ \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix} : z \in \mathbb{C}_* \},\$$

$$\Psi_s(z_1, z_2) := \exp\left(\operatorname{is} \mathfrak{I}(z_1 \overline{z_2}) \right) \text{ for fixed } s \in \mathbb{R}.$$

Rieffel deformation ~~>

Woronowicz–Zakrzewski quantum deformation(s) of $SL(2, \mathbb{C})$.

Convolution semigroups on Rieffel deformations

- As before: G I.c. group, abelian $\Gamma \leq G$, 2-cocycle Ψ on $\hat{\Gamma}$.
- (μ_t)_{t≥0} convolution semigroup of prob. meas. on G, invariant under the adjoint action of Γ.

Theorem (Skalski–V)

- The UCP semigroup induced by (μ_t)_{t≥0} on C₀(G) extends to C₀(G) ⋊_{left-right} Γ² and restricts to a UCP semigroup on C₀(G)^Ψ.
- This semigroup on $C_0(G)^{\Psi}$ is induced by a convolution semigroup of states $(\mu_t^{\Psi})_{t\geq 0}$ on G^{Ψ} .
- If all μ_t 's are symmetric (= invariant under inversion), then all μ_t^{Ψ} 's are symmetric (invariant under the [unitary] antipode of G^{Ψ}).

Example

Consider the above quantum deformation of $SL(2, \mathbb{C})$ w.r.t. $\mathbb{C}_* \hookrightarrow SL(2, \mathbb{C})$.

Measure on $\mathbb{C}_* \rightsquigarrow$ measure on $SL(2, \mathbb{C})$ invariant under the adjoint action of \mathbb{C}_* .

Thus, every (symmetric) Lévy process on \mathbb{C}_* induces a (symmetric) convolution semigroup of states on the deformed $\mathrm{SL}(2,\mathbb{C})$.

Convolution semigroups on LCQGs

Theorem (Skalski–V)

There exist 1 – 1 correspondences between:

- symmetric convolution semigroups of states on G;
- completely Markov semigroups on L[∞](G) that are right-translation invariant and KMS-symmetric;
- completely Markov semigroups on L²(G) that are right-translation invariant and symmetric;
- completely Dirichlet forms that are right-translation invariant.

Notions (Beurling–Deny, Albeverio–Høegh-Krohn, Sauvageot, Davies–Lindsay, Guido–Isola–Scarlatti, Cipriani–Sauvageot, Cipriani, and finally Goldstein–Lindsay)

- Markov operator = "mapping [0, 1] to itself" (roughly!).
- Markov semigroup = continuous semigroup of such
- KMS-symmetry

More examples: cocycle twistings

Data

$$\mathbb{G}$$
 – LCQG
 $\Omega \in \mathcal{U}(L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G}))$ – 2-cocycle:

 $(\mathbb{1}\otimes\Omega)\cdot(\mathrm{id}\otimes\Delta)\,(\Omega)=(\Delta\otimes\mathrm{id})(\Omega)\cdot(\Omega\otimes\mathbb{1}).$

Define $\Delta_{\Omega}: L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G}) \overline{\otimes} L^{\infty}(\mathbb{G})$ by

$$\Delta_{\Omega} := \Omega \Delta(\cdot) \Omega^*.$$

Theorem (De Commer)

 $(L^{\infty}(\mathbb{G}), \Delta_{\Omega})$ is a LCQG.

This process is called cocycle twisting.

It preserves neither the Haar weights nor compactness!

Remark

Cocycle twisting and the Rieffel deformation are dual to one another!

Ami Viselter (University of Haifa)

Lévy processes on quantum groups

More examples: cocycle twistings

- As before: \mathbb{G} LCQG, Ω 2-cocycle on \mathbb{G} .
- $(\mu_t)_{t\geq 0}$ convolution semigroup of states on G.
- $(T_t)_{t\geq 0}$ the associated UCP semigroup on $L^{\infty}(\mathbb{G})$.

Proposition (Skalski–V)

 $(T_t \otimes id)(\Omega) = \Omega$ for all $t \implies$ $(T_t)_{t>0}$ arises from a convolution semigroup of states on \mathbb{G}_{Ω} .

General example

 $\mathbb{G} := \hat{G}$ and abelian $\Gamma \leq G$ 2-cocycle Ψ on the l.c.a.g. $\hat{\Gamma} \rightsquigarrow$ 2-cocycle Ω on \mathbb{G} A semigroup of normalized positive-definite functions on G which is $\equiv 1$ on Γ satisfies the condition of the proposition \rightsquigarrow convolution semigroup of states on \hat{G}_{Ω} .

Example (quantum Heisenberg group)

 $G = \mathbb{H}_n(\mathbb{R}) = \mathbb{R}^{n+1} \rtimes \mathbb{R}^n$ = the Heisenberg group and $\Gamma = \mathbb{R}^{n+1}$ with a particular cocycle Ω on $\hat{\Gamma}$ $\rightsquigarrow \hat{G}_{\Omega}$ is the quantized Heisenberg group $\mathbb{H}_n^q(\mathbb{R})$ of Enock–Vainerman.

Thus:

convolution semigroup on $\mathbb{R}^{n+1} \rightsquigarrow$ convolution semigroup on $\mathbb{H}_n^q(\mathbb{R})$,

and if the former is symmetric, so is the latter.

A. Skalski and A. Viselter, work in progress.

A. Skalski and A. Viselter, *Convolution semigroups on locally compact quantum groups and noncommutative Dirichlet forms*. J. Math. Pures Appl. (2019).

- P. Kasprzak, *Rieffel deformation via crossed products*. J. Funct. Anal. (2009).
- P. Fima and L. Vainerman, *Twisting and Rieffel's deformation of locally compact quantum groups*. Comm. Math. Phys. (2009).
- K. De Commer, *Galois coactions for algebraic and locally compact quantum groups*. **Ph.D. Thesis**, KU Leuven (2009).

- S. Goldstein and J. M. Lindsay, Markov semigroups KMS-symmetric for a weight. Math. Ann. (1999).
- S. L. Woronowicz and S. Zakrzewski, *Quantum deformations of the Lorentz group. The Hopf* *-algebra level. Compositio. Math. (1994).

Thank you for your attention!

Thank You, Paul!