EXERCISES ON WINDOWS

- (1) (a) Convince yourself that $\operatorname{Coh}_{\mathbb{C}^*}(\mathbb{C}^{n+1} \setminus 0)$ is equivalent to $\operatorname{Coh}(\mathbb{P}^n)$.
 - (b) Using the usual covering by two affine charts, find (all graded pieces of) the Čech cohomology of the structure sheaf on C² \ 0. Repeat for Cⁿ \ 0.
 If you've never computed the cohomology of line bundles on projective space then this exercise is highly recommended.
- (2) Let $\mathcal{A} \subset \operatorname{Coh}_{\mathbb{C}^*}(\mathbb{C}^{n+1})$ be the abelian subcategory generated by $\mathcal{O}, \mathcal{O}(1), ..., \mathcal{O}(n)$. Show that the restriction functor $\rho^* : \mathcal{A} \to \operatorname{Coh}(\mathbb{P}^n)$ is *not* an equivalence (and hence $D^b(\mathcal{A})$ is not the same as \mathcal{W}).
- (3) (a) Let \mathbb{C}^* act on $\mathbb{C}^3_{x,y,z}$ with weights 1, 1, d, for some $d \in \mathbb{Z}$. Let X be the quotient of the open set $\{(x, y) \neq (0, 0)\}$ by this action. Convince yourself that X is the total space of the line-bundle $\mathcal{O}(d)$.
 - (b) Let $\mathcal{W} \subset D^b_{\mathbb{C}*}(\mathbb{C}^3)$ be the subcategory generated by \mathcal{O} and $\mathcal{O}(1)$. If d > 0 then the restriction functor $\mathcal{W} \to D^b(X)$ is not an equivalence. Why not?
- (4) Let X_+ and X_- be the two sides of the Atiyah flop, and let $\Phi : D^b(X_+) \to D^b(X_-)$ be the derived equivalence constructed from the window:

$$\mathcal{W} = \langle \mathcal{O}, \mathcal{O}(1) \rangle \subset D^b_{\mathbb{C}*}(\mathbb{C}^4)$$

- (a) Find an object in \mathcal{W} whose restriction to X_+ is $\mathcal{O}(-1)$. Hence compute $\Phi(\mathcal{O}(-1))$. What are its homology sheaves?
- (b) Now let $\Psi : D^b(X_+) \to D^b(X_-)$ be the derived equivalence constructed from the window $\langle \mathcal{O}(-1), \mathcal{O} \rangle$. Show that the autoequivalence $T = \Phi \circ \Psi^{-1}$ is not the identity functor. Can you say anything more about it?
- (5) Let \mathbb{C}^* act on \mathbb{C}^3 with weights (1, 1, -1). Let X_{\pm} be the two GIT quotients.
 - (a) What are X_+ and X_- ?
 - (b) Let $\mathcal{W} = \langle \mathcal{O}, \mathcal{O}(1) \rangle \subset D^b_{\mathbb{C}*}(\mathbb{C}^3)$. Find an object in \mathcal{W} which restricts to zero on X_- .
 - (c) Show that $D^b(X_+)$ has a semi-orthogonal decomposition into $D^b(X_-)$ and one other object. This is Orlov's blow-up formula.
- (6) Let X be the total space of the rank two vector bundle $\mathcal{O}(-1,-1)^{\oplus 2}$ over $\mathbb{P}^1 \times \mathbb{P}^1$. It can be constructed as a GIT quotient of \mathbb{C}^6 by $(\mathbb{C}^*)^2$ acting with weights:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & -1 & -1 \end{pmatrix}$$

- (a) Find the unstable strata and the grade-restriction rules. Find four equivariant line bundles on \mathbb{C}^6 that satisfy all the grade-restriction rules. Do you think these bundles generate $D^b(X)$?
- (b) This GIT problem has three quotients. What are the unstable strata and the grade-restriction rules for the other two quotients? Is there a 'magic' window that works for all three?
- (c) What happens if we instead use the follow weight matrix?

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{pmatrix}$$

Hint: there are three quotients, and for every quotient there are three unstable strata.

References for Windows and GIT

Thomas - Notes on GIT and symplectic reduction for bundles and varieties <u>https://arxiv.org/abs/math/0512411</u>

Halpern-Leistner – The derived category of a GIT quotient <u>https://arxiv.org/abs/1203.0276v1</u> *NB* – this link is to v1 of the paper which is more readable than later versions.

Segal – Equivalences between GIT quotients of Landau-Ginzburg B-models <u>https://arxiv.org/abs/0910.5534</u>

Ballard-Favero-Katzarkov - Variation of geometric invariant theory quotients and derived categories https://arxiv.org/abs/1203.6643

Donovan-Segal - Window shifts, flop equivalences and Grassmannian twists https://arxiv.org/abs/1206.0219

Halpern-Leistner-Sam - Combinatorial constructions of derived equivalences <u>https://arxiv.org/abs/1601.02030</u>

Halpern-Leistner – Derived Θ -stratifications and the D-equivalence conjecture <u>https://arxiv.org/abs/2010.01127</u> *Advanced*!