
1. Problems

Bundles on curves.

Problem 1.1. (1) Show that every vector bundle V on P1 is isomorphic to a direct sum
of line bundles V '

⊕r
i=1OP1(ai) for a uniquely determined sequence of integers

a1 ≤ a2 ≤ · · · ≤ ar. (Hint: Use induction on the rank. Show that there is a maximal
a such that there is a nonzero map OP1(a) → V . Show that the cokernel of this
map is a vector bundle. Show that for the given choice of a, there are no nontrivial
extensions.)

(2) Conclude that there are no stable bundles on P1 of rank at least 2 and there exists
semistable bundles on P1 only when the rank divides the degree.

(3) Determine the cohomology of a vector bundle on P1.
(4) Show that the tangent bundle TPn is not a direct sum of line bundles for n > 1. If

you want a challenge, show that TPn is stable.

Problem 1.2. (1) Show that every vector bundle V on a genus 1 curve E is isomorphic
to a direct sum of semistable vector bundles (Hint: Show that the Harder-Narasimhan
filtration splits.)

(2) Show that there exists a semistable vector bundle on E of every rank and degree.
Show that there exists a stable vector bundle on E if and only if the rank and the
degree are coprime.

(3) Determine the cohomology of a semistable vector bundle V on E if OE does not occur
as a Jordan-Hölder factor of V . Give examples of semistable vector bundles on E with
the same associated graded but different cohomology groups.

Problem 1.3. Let C be a smooth, projective curve of genus g ≥ 2.

(1) Construct semistable bundles of every rank r ≥ 1 and degree d on C. If you want a
challenge, show that the general semistable bundle is stable.

(2) Show that the general stable bundle V has no higher cohomology if χ(V ) ≥ 0 and
has no global sections if χ(V ) ≤ 0.

(3) Show that the general stable bundle V is globally generated if χ(V ) ≥ r + 1.
(4) Show that if V is a semistable vector bundle with µ(V ) > 2g − 2, then V has no

higher cohomology. Construct examples of semistable bundles with µ(V ) ≤ 2g − 2
that have higher cohomology.

(5) Show that if V is a semistable bundle with µ(V ) > 2g−1, then V is globally generated.
Find examples of semistable bundles with µ(V ) ≤ 2g − 1 which are not globally
generated.

Bundles on P2.

Problem 1.4. (1) Show that an exceptional sheaf on Pn is a vector bundle. Give an
example of an exceptional sheaf on a Hirzebruch surface Fe with e ≥ 1 which is not a
vector bundle.

(2) Using the Riemann-Roch Theorem, show that the rank and c1 of an exceptional bundle
on P2 are relatively prime.

(3) Using the fact that χ(E,E) = 1 for an exceptional bundle on P2, compute the dis-
criminant in terms of the slope.

(4) Show that on P2 there is a unique exceptional bundle with a given exceptional slope.
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(5) Compute several mutations of the standard exceptional collection OP2 ,OP2(1),OP2(2).

Problem 1.5. (1) Show that If F is a pure sheaf of rank r > 0, then

µ-stability =⇒ Gieseker stability =⇒ Gieseker semistability =⇒ µ-semistability.

Prove that these notions coincide when c1(V ) ·Hn−1 and r(V )Hn are relatively prime.
Show that the reverse implications are false in general (see the next two steps for
examples).

(2) Let p be a point in P2. Show that OP2 ⊕ Ip is slope semistable but not Gieseker
semistable. Prove that there are no Gieseker semistable sheaves of rank 2, c1 = 0 and
∆ = 1

2
. Deduce that an elementary modification of a Gieseker semistable sheaf (hint:

consider OP2 ⊕OP2) may fail to be Gieseker semistable.
(3) Let p, q, r be three distinct points on P2. Show that ext1(Ip, Iq,r) = 2. Prove that a

nonsplit extension

0→ Iq,r → E → Ip → 0

is Gieseker stable but not slope stable.

Problem 1.6. (1) Show that a general stable bundle V on P2 admits a resolution (called
the Gaeta resolution) of the form

0→ OP2(a− 2)γ → OP2(a− 1)β ⊕OP2(a)α → V → 0, or

0→ OP2(a− 2)γ ⊕OP2(a− 1)β → OP2(a)α → V → 0.

(2) Compute the Gaeta resolution for the ideal sheaf of 2, 3, 4 or 5 general points on P2.
(3) Deduce that the moduli space of stable sheaves on P2 is unirational and that the

general member is locally free.
(4) Prove that if V is a general stable bundle with µ(V ) ≥ 0 and χ(V ) ≥ r + 2, then V

is globally generated.

Bundles on K3 surfaces.

Problem 1.7. Let X be a K3 surface with Pic(X) ∼= ZH and H2 = 2n.

(1) Show that there exists a spherical bundle V with resolution

0→ OX → OX(H)n+2 → V → 0

and compute the cohomology of V .
(2) Let C be a smooth member of |H|. Consider extensions of the form

0→ OX(H)⊕r → V → OC(L)→ 0,

where L is a line bundle on C with Euler characteristic 2n− r. Compute the Mukai
vector of V . Determine when the general member of the moduli space has this form.
Compute the cohomology of V .

(3) Let n = 1 and fk denote the kth Fibonacci number starting with f1 = f2 = 1. Show
that there is a stable spherical bundle with resolution

0→ O⊕f2k−2

X → OX(H)⊕f2k → V → 0.

Compute the cohomology of V .
(4) Consider the Mukai vector (r, rpH, rp2n − 1) where r and p are integers. Show that

the general member of the corresponding moduli space is not locally free.
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Bundles on more general surfaces.

Problem 1.8. Let X be a surface with a curve C such that C2 < 0. Show that for each
rank there exists infinitely many moduli spaces of sheaves of rank r where weak Brill-Noether
fails.

Problem 1.9 (Mestrano’s example). Let X be a very general sextic surface in P3. Show
that the moduli space of sheaves on X may be reducible by considering extensions of the
following form

0→ OX → V → IZ(H)→ 0,

where Z is a zero-dimensional scheme of length 11 and Z is either contained in a twisted cubic
curve or in a hyperplane section of X. Find other examples of reducible and/or nonreduced
moduli spaces of sheaves on surfaces.

The stable base locus decomposition and Bridgeland walls on P2.

Problem 1.10. Assume that r(ζ), r(ξ) > 0 and µ(ζ) 6= µ(ξ). Show that the potential
Bridgeland wall W (ζ, ξ) in the st-plane a semi-circle with center (c,0), where

c =
1

2
(µ(ζ) + µ(ξ))− ∆(ζ)−∆(ξ)

µ(ζ)− µ(ξ)
,

and radius ρ with
ρ2 = (c− µ(ζ))2 − 2∆(ζ).

Problem 1.11. If an ideal sheaf of n points on P2 is destabilized along a wall W given by
a subobject of rank at least 2, then the radius ρW of W satisfies

ρ2W ≤
n

4
.

Problem 1.12. Compute the stable base locus decomposition of P2[n] for n = 2, 3, 4. Classify
the Bridgeland walls in the st-plane for the ideal sheaves of 2, 3 or 4 points.

Problem 1.13. Show that the monomial scheme defined by IZ = (x4, xy, y4) has the Betti
diagram as a general scheme of length 7. However, show that IZ is destabilized in a wall
bigger than the collapsing wall. Conclude that the same Betti diagram is not sufficient to
determine the Bridgeland wall where an ideal sheaf is destabilized.

Problem 1.14. Compute the effective cone of the moduli spaces of sheaves on P2 with
invariants r = 3, µ = 2

3
and ∆ = 17

9
.

The ample cone on more general surfaces.

Problem 1.15. Let X be a very general surface of degree d > 3 in P3 and let H denote
the hyperplane class on P3. Compute the ample cone of the moduli space of rank 2 vector
bundles with c1 = H and ∆� 0.

Problem 1.16. Let X be a double cover of P2 branched along a very general curve of degree
2d ≥ 6 and let H denote the pullback of the hyperplane class from P2. Compute the ample
cone of the moduli space of rank 2 vector bundles with c1 = H and ∆� 0.
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