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I strongly encourage you to work in groups. You probably only have time to
do one or two of these exercises, so skim them all and start with the one that
appeals to you the most. If you’re not sure about definitions or results from the
lectures, please ask!

1. Let X be a K3 surface. Then

H∗(X,Z) = Z 0 Z22 0 Z,

so

K0
top(X) = Z24 K1

top(X) = 0.

The point of this exercise is to prove that the Mukai vector

v : K0
top(X) → H∗(X,Q)

is an isomorphism onto H∗(X,Z).

(a) Compute td(TX) and
√

td(TX). Use the fact that c1(TX) = 0 and
c2(TX) = 24ξ, where ξ ∈ H4(X,Z) is Poincaré dual to a point. You
can find the formula for the Todd class on Wikipedia, or in Appendix
A of Hartshorne.

(b) For any class κ ∈ K0
top(X), show that both

ch(κ) and v(κ) := ch(κ)
√
td(TX)

are inH∗(X,Z), not justH∗(X,Q). Use the fact that the intersection
pairing is even: if α ∈ H2(X,Z), then α2 ∈ 2Zξ.

(c) For every i and every α ∈ Hi(X,Z), find a class κ ∈ K0
top(X) such

that v(κ) = α. Use the fact that for every α ∈ H2(X,Z), there is a
unique topological line bundle L with c1(L) = α, which is true for
any X with the homotopy type of a finite CW-complex.

(d) Convince yourselves that you have proved the initial claim.

(e) Convince yourselves that the same claim does not hold for a cubic
surface.
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2. (If you really like topology.) Let X be an Abelian n-fold, so topologically
it is a torus (S1)2n. The point of this exercise is to prove that the Mukai
vector

v : K∗
top(X) → H∗(X,Q)

is an isomorphism onto H∗(X,Z).

(a) Observe that the tangent bundle is a trivial bundle, so td(TX) = 1,
so the Mukai vector is the same as the Chern Character.

(b) The claim holds for the circle using the corollaries to the Atiyah–
Hirzebruch spectral sequence that I gave on Monday: we have

H∗(S1,Z) = Z Z,

so

K0
top(S

1) = Z K1
top(S

1) = Z,

and the leading term of the Chern character of any class is integral,
but in this case there are only leading terms.

Or you can see it directly: for K0(S1), observe that complex vector
bundles on S1 are all trivial; you might deduce this from the fact
that GLn(C) is connected. For K1(S1) = K−1(S1), identify it with
the reduced K̃0(ΣS1) = K̃0(S2) = K̃0(CP1) and mess around with
the rank-0 classes OP1(k)−OP1 .

(c) There is a Künneth formula for the topological K-theory of a product,
just like the familiar one for the cohomology of a product. The
oldest reference is probably Atiyah, “Vector bundles and the Künneth
formula,” but you can search online for more recent references and
the compatibility with the Chern character. Convince yourselves that
this proves the claim on (S1)2n.

(d) Alternatively, you can use the fact that the suspension of a product
of spheres is a bouquet of spheres: more generally,

Σ(X × Y ) = ΣX ∨ ΣY ∨ Σ(X ∧ Y ),

where ∨ is the wedge product and ∧ is the smash product – for a nice
picture, see Hatcher, Proposition 4I.1 – and we have Sm∧Sn = Sm+n.
So to prove the claim on products of cirlces, we can prove it on
reduced K-theory of all spheres. Work out the details.

(e) Now you can easily prove a generalization of Corollary 9.24 in Huybrechts’
Fourier–Mukai book.
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3. Let X = P2, and let E = I∆ be the ideal sheaf of the diagonal ∆ ⊂ X×X.

(a) Show that ΦE(OX) = 0.

(b) Convince yourselves that the exact sequence

0 → I∆ → OX×X → O∆ → 0

induces an exact triangle

ΦE(F ) → OX ⊗ RΓ(F ) → F

for all F ∈ D(X).

(c) Show that ΦE(OX(−1)) = OX(−1)[−1], and similarly with OX(−2).

(d) On Monday I asserted that the action of ΦH
E on H∗(X,Q) = Q[h]/h3

is given by

1 7→ − 25
32 + 21

128h+ 49
1024h

2

h 7→ 3
4 − 7

16h+ 21
128h

2

h2 7→ 1 + 3
4h− 25

32h
2.

Check that this agrees with the facts above, using

v(ΦE(F )) = ΦH
E (v(F ))

and √
td(TX) = 1 + 3

4h+ 7
32h

2

If you think you’ve found a mistake in my computation, let me know.
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4. Let X be a (smooth complex projective) curve of genus 1, let ∆ ⊂ X ×X
be the diagonal, and let E = OX×X(−∆). In my first lecture, I argued
that the functor

ΦE : Db(X) → Db(X)

takes

Ox 7→ OX(−x), OX 7→ OX [−1], OX(x) 7→ Ox[−1],

where if x ∈ X is a point thenOx denotes its skyscraper sheaf andOX(±x)
is a line bundle of degree ±1. The point of this exercise is to finish the
details of the last claim.

(a) To compute ΦE(OX(x)), we want to take the line bundle

L := p∗OX(x)⊗ E = OX×X(x×X −∆).

and apply Rq∗. (Draw a picture!)

Over a point y ∈ X, the restriction of L to the fiber q−1(y) is the line
bundle OX(x− y), which has h0 = h1 = 1 if x = y, and h0 = h1 = 0
if x ̸= y, and of course h≥2 = 0. From Hartshorne, Chapter III
Theorem 12.11, we conclude that R≥2q∗L = 0, and that R1q∗L is
supported at x, and its restriction to the point x has rank 1. Similarly
we find that R0q∗L vanishes away from x, but we get no control of
the rank of its restriction to x.

(b) Thus R1q∗L = Omx for some m ≥ 1, meaning the structure sheaf
of the fat point of length m supported at x. (There is only one
such fat point because X is a smooth curve. It is isomorphic to
Spec(C[t]/tm+1).) Similarly, R0q∗L = On1x ⊕ · · · ⊕ Onkx for some
n1, . . . , nk. Both follow from the structure theorem for finitely generated
modules over the principal ideal domain, applied to the local ring
OX,x.

(c) Now the Leray spectral sequence for q gives

h0(L) = n1 + · · ·+ nk, h1(L) = m

(d) On the other hand, we have seen that

R0p∗E = 0, R1p∗E = OX ,

so the projection formula (as reviewed in Sunday’s lecture, or use
Hartshorne, Chapter III Exercise 8.3) gives

R0p∗L = 0, R1p∗L = OX(x),

so the Leray spectral sequence for p gives

h0(L) = 0, h1(L) = 1.

Convince yourselves that you’ve finished proving ΦE(OX(x)) = Ox[−1].

(e) If you’re feeling very energetic, adapt this argument to show that
E ◦ E∗ = O∆[−1] = E∗ ◦ E.
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